Category Archives: 架构

Pinterest谈实战经验:如何在两年内实现零到数百亿的月访问

Pinterest一直保持着指数增长,每一个半月都会翻一翻。在两年内,他们实现了从0到数百亿的月PV;从开始的两个创始人加一个工程师增长到现在超过40个工程师,从一个小型的MySQL服务器增长到180个Web Enigne、240个API Enigne、88个MySQL DB(cc2.8xlarge,每个DB都会配置一个从属节点)、110个Redis Instance以及200个Mmecache Instance。

在一个名为 《Scaling Pinterest》 的主题演讲上,Pinterest的Yashwanth NelapatiMarty Weiner为我们讲述了这个戏剧性的过程。当然扩展到当下规模,Pinterest在众多选择中不可避免的走了许多的弯路,而Todd Hoff认为其中最宝贵的经验该归结于以下两点:

  1. 如果你的架构应对增长所带来的问题时,只需要简单的投入更多的主机,那么你的架构含金量十足。
  2. 当你把事物用至极限时,这些技术都会以各自不同的方式发生故障,这导致他们对工具的选择有着特殊的偏好:成熟、简单、优秀、知名、被更多的用户喜爱、更好的支持、稳定且杰出的表现、通常情况下无故障以及免费。使用这些标准,他们选择了MySQL、Solr、Memcache、Redis、Cassandra,同时还抛弃了MongoDB。

同样这两个点是有关联的,符合第二个原则的工具就可以通过投入更多的主机进行扩展。即使负载的增加,项目也不会出现很多故障。即使真的出现难以解决的问题,至少有一个社区去寻找问题解决的方案。一旦你选择过于复杂和挑剔的工具,在扩展的道路上将充满荆棘。

需要注意的是所有他们选择的工具都依靠增加分片来进行扩展,而非通过集群。讲话中还阐述了为什么分片优于集群以及如何进行分片,这些想法可能是之前你闻所未闻的。

下面就看一下Pinterest扩展的阶段性时间轴:

项目背景

  • Pins是由其它零零碎碎信息集合成的图片,显示了对客户重要的信息,并且链接到它所在的位置。
  • Pinterest是一个社交网络,你可以follow(关注)其他人以及board。
  • 数据库:Pinterest的用户拥有board,而每个board都包含pin;follow及repin人际关系、验证信息。

1. 2010年3月发布——寻找真我的时代

在那时候,你甚至不知道需要建立一个什么样的产品。你有想法,所以你快速的迭代以及演变。而最终你将得到一些很小的MySQL查询,而这些查询在现实生活中你从未进行过。

Pinterest初期阶段的一些数字:

  • 2个创始人
  • 1个工程师
  • Rackspace
  • 1个小的网络引擎
  • 1个小的MySQL数据库
  • 2011年11月

仍然是小规模,产品通过用户反馈进行演变后的数字是:

  • Amazon EC2 + S3 + CloudFront
  • 1 NGinX, 4 Web Engines (用于冗余,不全是负载)
  • 1 MySQL DB + 1 Read Slave (用于主节点故障情况)
  • 1 Task Queue + 2 Task Processors
  • 1 MongoDB (用于计数)
  • 2 Engineers

2. 贯穿2011年——实验的时代

迈上疯狂增长的脚步,基本上每1个半月翻一翻。

  • 当你增长的如此之快,每一天每一星期你可能都需要打破或者抛弃一些东西。
  • 在这个时候,他们阅读大量的论文,这些论文都阐述着只需要添加一台主机问题就会得以解决。他们着手添加许多技术,随后又不得不放弃。
  • 于是出现了一些很奇怪的结果
  • Amazon EC2 + S3 + CloudFront
  • 2NGinX, 16 Web Engines + 2 API Engines
  • 5 Functionally Sharged MySQL DB + 9 read slaves
  • 4 Cassandra Nodes
  • 15 Membase Nodes (3 separate clusters)
  • 8 Memcache Nodes
  • 10 Redis Nodes
  • 3 Task Routers + 4 Task Processors
  • 4 Elastic Search Nodes
  • 3 Mongo Clusters
  • 3个工程师
  • 5个主数据库技术,只为了独立其中的数据。
  • 增长太快以至于MySQL疲于奔命,所有其它的技术也达到了极限。
  • 当你把事物用至极限时,这些技术都会以各自不同的方式出错。
  • 开始抛弃一些技术,并且自我反省究竟需要些什么,基本上重做了所有的架构。

3. 2012年2月——成熟的时代

  • 在重做了所有的架构后,系统呈现了如下状态
  • Amazon EC2 + S3 + Akamai, ELB
  • 90 Web Engines + 50 API Engines
  • 66 MySQL DBs (m1.xlarge) +,每个数据库都配备了从属节点
  • 59 Redis Instances
  • 51 Memcache Instances
  • 1 Redis Task Manager + 25 Task Processors
  • Sharded Solr
  • 6个工程师
  • 现在采用的技术是被分片的MySQL、Redis、Memcache和Solr,有点在于这些技术都很简单很成熟。
  • 网络传输增长仍然保持着以往的速度,而iPhone传输开始走高。

4. 2012年10月12日 —— 收获的季节

大约是1月份的4倍

  • 现在的数据是:
  • Amazon EC2 + S3 + Edge Cast,Akamai, Level 3
  • 180 Web Engines + 240 API Engines
  • 88 MySQL DBs (cc2.8xlarge) ,同样每个数据库都有一个从属节点
  • 110 Redis Instances
  • 200 Memcache Instances
  • 4 Redis Task Manager + 80 Task Processors
  • Sharded Solr
  • 40个工程师(仍在增长)
  • 需要注意的是,如今的架构已趋近完美,应对增长只需要投入更多的主机。
  • 当下已开始转移至SSD

下面一览该演讲中的干货,决策的制定:

为什么会选择EC2和S3

  1. 相当好的可靠性,即使数据中心发生故障。多租户会增加风险,但是也不是太坏。
  2. 良好的报告和支持。它们(EC2和S3)有着良好的架构,并且知道问题所在。
  3. 完善的周边设施,特别是在你需要快速增长时。你可以从APP Engine处获得maged cache、负载均衡、MapReduce、数据库管理以及其它你不想自己动手编写的组件,这可以加速你应用程序的部署,而在你工程师空闲时,你可以着手编写你需要的一切。
  4. 新的实例可以在几秒内就绪,这就是云的力量;特别是在只有两个工程师的初期,不需要去担心容量规划,更不需要花两个星期去建立自己的Memcache,你可以在数分钟内添加10个Memcached。
  5. 缺点:有限的选择。直到最近,才可以选择使用SSD,同时无法获得太大的内存配置。
  6. 优点:你不需要给大量的主机进行不同的配置。

为什么会选择MySQL

  1. 非常成熟。
  2. 非常稳定。不会宕机,并且不会丢失数据。
  3. 在招聘上具有优势,市场上有大把的人才。
  4. 在请求呈直线上升时,仍能将相应时间控制在一定的范围内,有些数据库技术在面对请求的飙升时表现并不是很好。
  5. 非常好的周边软件支持——XtraBackup、Innotop、Maatkit。
  6. 可以从类似Percona这样的公司得到优秀的技术支持。
  7. 开源(免费)——这一点非常重要,特别是在资金缺乏的初期

为什么使用Memcache

  • 非常成熟。
  • 非常简单。可以当成是一个socket哈希表
  • 杰出稳定的表现
  • 知名并为大量用户喜爱
  • 永不崩溃
  • 开源

为什么选择Redis

  • 虽然还不够成熟,但是非常简单及优秀
  • 提供了大量的数据结构类型
  • 提供多种的选择进行持久化和备份:你可以备份而非持久化,选择备份的话你还可以选择多久备份一次;同样你还可以选择使用什么方式进行持久化,比如MySQL等。
  • Home feed被储存在Redis上,每3个小时保存一次;然而并不是3个小时持久化一次,只是简单的每3个小时备份一次。
  • 如果你存储数据的主机发生故障,丢失的也只是备份周期内的数据。虽然不是完全可靠,但是非常简单。避免了复杂的持久化及复制,这样的架构简单且便宜。
  • 知名并为大量用户喜爱
  • 稳定且杰出的表现
  • 很少出故障。有一些专有的故障模型,你需要学会解决。这也是成熟的优势,只需要学习就可以解决。
  • 开源

Solr

  1. 只需要几分钟的安装时间,就可以投入使用
  2. 不能扩展到多于一台的机器上(最新版本并非如此)
  3. 尝试弹性搜索,但是以Pinterest的规模来说,可能会因为零碎文件和查询太多而产生问题。
  4. 选择使用Websolr,但是Pinterest拥有搜索团队,将来可能会开发自己的版本。

集群vs.分片

  • 在迅速扩展的过程中,Pinterest认识到每次负载的增加,都需要均匀的传播他们的数据。
  • 针对问题先确定解决方案的范围,他们选择的范围是集群和分片之间的一系列解决方案。

集群——所有的操作都是通过自动化

  • 比如:Cassandra、MemBase、HBase
  • 结论:没有安全感,将来可能会比较成熟,但是当下这个解决方案中还存在太多的复杂性和故障点。
  • 特性:
  • 数据自动分布
  • 节点间转移数据
  • 需要平衡分配
  • 节点间的相互通信,需要做很多措施用于防止干扰、无效传递及协商。
  • 优点:
  • 自动扩展你的数据存储,最起码论文中是这么说的。
  • 便于安装
  • 数据上的空间分布及机房共置。你可以在不同区域建立数据中心,数据库会帮你打理好一切。
  • 高有效性
  • 负载平衡
  • 不存在单点故障
  • 缺点:
  • 仍然不成熟。
  • 本质上说还很复杂。一大堆的节点必须对称协议,这一点非常难以解决。
  • 缺少社区支持。社区的讨论因为产品方向的不同而不能统一,而在每个正营中也缺乏强有力的支持。
  • 缺乏领域内资深工程师,可能大多数的工程师都还未使用过Cassandra。
  • 困难、没有安全感的机制更新。这可能是因为这些技术都使用API并且只在自己的领域内通行,这导致了复杂的升级路径。
  • 集群管理算法本身就用于处理SPOF(单点故障),如果存在漏洞的话可能就会影响到每个节点。
  • 集群管理器代码非常复杂,并且需要在所有节点上重复,这就可能存在以下的故障模式:
  • 数据平衡失控。当给集群中添加新的主机时,可能因为数据的拷贝而导致集群性能下降。那么你该做什么?这里不存在去发现问题所在的工具。没有社区可以用来求助,同样你也被困住了,这也是Pinterest回到MySQL的原因。
  • 跨节点的数据损坏。如果这里存在一个漏洞,这个漏洞可能会影响节点间的日志系统和压缩等其它组件?你的读延时增加,所有的数据都会陷入麻烦以及丢失。
  • 错误负载平衡很难被修复,这个现象十分普遍。如果你有10个节点,并且你注意到所有的负载都被堆积到一个节点上。虽然可以手动处理,但是之后系统还会将负载都加之一个节点之上。
  • 数据所有权问题,主次节点转换时的数据丢失。集群方案是非常智能的,它们会在特定的情况下完成节点权利的转换,而主次节点切换的过程中可能会导致数据的部分丢失,而丢失部分数据可能比丢失全部还糟糕,因为你不可能知道你究竟丢失了哪一部分。

分片——所有事情都是手动的

  • 结论:它是获胜者。Todd Hoff还认为他们的分片架构可能与Flickr架构类似。
  • 特性:
  • 分片可以让你摆脱集群方案中所有不想要的特性。
  • 数据需要手动的分配。
  • 数据不会移动。Pinterest永远都不会在节点间移动,尽管有些人这么做,这让他们在一定范围内站的更高。
  • 通过分割数据的方式分配负载。
  • 节点并没有互相通信,使用一些主节点控制程序的运行。
  • 优点:
  • 可以分割你的数据库以提高性能。
  • 空间分布及放置数据
  • 高有效性
  • 负载平衡
  • 放置数据的算法非常简单。主要原因是,用于处理单点故障的代码只有区区的半页,而不是一个复杂的集群管理器。并且经过短暂的测试就知道它是否能够正常工作。
  • ID生成非常简单
  • 缺点:
  • 不可以执行大多数的join。
  • 失去所有事务的能力。在一个数据库上的插入可能会成功,而在另一个上会失败。
  • 许多约束必须放到应用程序层。
  • 模式的转变需要从长计议。
  • 报告需要在所有分片上执行查询,然后需要手动的进行聚合。
  • Join在应用程序层执行。
  • 应用程序必须容忍以上所有问题。

什么时候进行分片

  1. 如果你的项目拥有PB级的数据,那么你需要立刻对其进行分片。
  2. Pin表格拥有百万行索引,索引大小已经溢出内存并被存入了磁盘。
  3. Pinterest使用了最大的表格,并将它们(这些索引)放入自己的数据库。
  4. 然后果断的超过了单数据库容量。
  5. 接着Pinterest必须进行分片。

分片的过渡

  • 过渡从一个特性的冻结开始。
  • 确认分片该达到什么样的效果——希望尽少的执行查询以及最少数量的数据库去呈现一个页面。
  • 剔除所有的MySQL join,将要做join的表格加载到一个单独的分片去做查询。
  • 添加大量的缓存,基本上每个查询都需要被缓存。
  • 这个步骤看起来像:
  • 1 DB + Foreign Keys + Joins
  • 1 DB + Denormalized + Cache
  • 1 DB + Read Slaves + Cache
  • Several functionally sharded DBs+Read Slaves+Cache
  • ID sharded DBs + Backup slaves + cache
  • 早期的只读从属节点一直都存在问题,因为存在slave lag。读任务分配给了从属节点,然而主节点并没有做任何的备份记录,这样就像一条记录丢失。之后Pinterest使用缓存解决了这个问题。
  • Pinterest拥有后台脚本,数据库使用它来做备份。检查完整性约束、引用。
  • 用户表并不进行分片。Pinterest只是使用了一个大型的数据库,并在电子邮件和用户名上做了相关的一致性约束。如果插入重复用户,会返回失败。然后他们对分片的数据库做大量的写操作。

如何进行分片

  • 可以参考Cassandra的ring模型、Membase以及Twitter的Gizzard。
  • 坚信:节点间数据传输的越少,你的架构越稳定。
  • Cassandra存在数据平衡和所有权问题,因为节点们不知道哪个节点保存了另一部分数据。Pinterest认为应用程序需要决定数据该分配到哪个节点,那么将永远不会存在问题。
  • 预计5年内的增长,并且对其进行预分片思考。
  • 初期可以建立一些虚拟分片。8个物理服务器,每个512DB。所有的数据库都装满表格。
  • 为了高有效性,他们一直都运行着多主节点冗余模式。每个主节点都会分配给一个不同的可用性区域。在故障时,该主节点上的任务会分配给其它的主节点,并且重新部署一个主节点用以代替。
  • 当数据库上的负载加重时:
  • 先着眼节点的任务交付速度,可以清楚是否有问题发生,比如:新特性,缓存等带来的问题。
  • 如果属于单纯的负载增加,Pinterest会分割数据库,并告诉应用程序该在何处寻找新的节点。
  • 在分割数据库之前,Pinterest会给这些主节点加入一些从属节点。然后置换应用程序代码以匹配新的数据库,在过渡的几分钟之内,数据会同时写入到新旧节点,过渡结束后将切断节点之间的通道。

ID结构

  • 一共64位
  • 分片ID:16位
  • Type:10位—— Board、User或者其它对象类型
  • 本地ID——余下的位数用于表中ID,使用MySQL自动递增。
  • Twitter使用一个映射表来为物理主机映射ID,这将需要备份;鉴于Pinterest使用AWS和MySQL查询,这个过程大约需要3毫秒。Pinterest并没有让这个额外的中间层参与工作,而是将位置信息构建在ID里。
  • 用户被随机分配在分片中间。
  • 每个用户的所有数据(pin、board等)都存放在同一个分片中,这将带来巨大的好处,避免了跨分片的查询可以显著的增加查询速度。
  • 每个board都与用户并列,这样board可以通过一个数据库处理。
  • 分片ID足够65536个分片使用,但是开始Pinterest只使用了4096个,这允许他们轻易的进行横向扩展。一旦用户数据库被填满,他们只需要增加额外的分片,然后让新用户写入新的分片就可以了。

查找

  • 如果存在50个查找,举个例子,他们将ID分割且并行的运行查询,那么延时将达到最高。
  • 每个应用程序都有一个配置文件,它将给物理主机映射一个分片范围。
  • “sharddb001a”: : (1, 512)
  • “sharddb001b”: : (513, 1024)——主要备份主节点
  • 如果你想查找一个ID坐落在sharddb003a上的用户:
  • 将ID进行分解
  • 在分片映射中执行查找
  • 连接分片,在数据库中搜寻类型。并使用本地ID去寻找这个用户,然后返回序列化数据。

对象和映射

  • 所有数据都是对象(pin、board、user、comment)或者映射(用户由baord,pin有like)。
  • 针对对象,每个本地ID都映射成MySQL Blob。开始时Blob使用的是JSON格式,之后会给转换成序列化的Thrift。
  • 对于映射来说,这里有一个映射表。你可以为用户读取board,ID包含了是时间戳,这样就可以体现事件的顺序。
  • 同样还存在反向映射,多表对多表,用于查询有哪些用户喜欢某个pin这样的操作。
  • 模式的命名方案是:noun_verb_noun: user_likes_pins, pins_like_user。
  • 只能使用主键或者是索引查找(没有join)。
  • 数据不会向集群中那样跨数据的移动,举个例子:如果某个用户坐落在20分片上,所有他数据都会并列存储,永远不会移动。64位ID包含了分片ID,所以它不可能被移动。你可以移动物理数据到另一个数据库,但是它仍然与相同分片关联。
  • 所有的表都存放在分片上,没有特殊的分片,当然用于检测用户名冲突的巨型表除外。
  • 不需要改变模式,一个新的索引需要一个新的表。
  • 因为键对应的值是blob,所以你不需要破坏模式就可以添加字段。因为blob有不同的版本,所以应用程序将检测它的版本号并且将新记录转换成相应的格式,然后写入。所有的数据不需要立刻的做格式改变,可以在读的时候进行更新。
  • 巨大的胜利,因为改变表格需要在上面加几个小时甚至是几天的锁。如果你需要一个新的索引,你只需要建立一张新的表格,并填入内容;在不需要的时候,丢弃就好。

呈现一个用户文件界面

  1. 从URL中取得用户名,然后到单独的巨型数据库中查询用户的ID。
  2. 获取用户ID,并进行拆分
  3. 选择分片,并进入
  4. SELECT body from users WHERE id = <local_user_id>
  5. SELECT board_id FROM user_has_boards WHERE user_id=<user_id>
  6. SELECT body FROM boards WHERE id IN (<boards_ids>)
  7. SELECT pin_id FROM board_has_pins WHERE board_id=<board_id>
  8. SELECT body FROM pins WHERE id IN (pin_ids)
  9. 所有调用都在缓存中进行(Memcache或者Redis),所以在实践中并没有太多连接数据库的后端操作。

脚本相关

  1. 当你过渡到一个分片架构,你拥有两个不同的基础设施——没有进行分片的旧系统和进行分片的新系统。脚本成为了新旧系统之间数据传输的桥梁。
  2. 移动5亿的pin、16亿的follower行等。
  3. 不要轻视项目中的这一部分,Pinterest原认为只需要2个月就可以完成数据的安置,然而他们足足花了4至5个月时间,别忘了期间他们还冻结了一项特性。
  4. 应用程序必须同时对两个系统插入数据。
  5. 一旦确认所有的数据都在新系统中就位,就可以适当的增加负载来测试新后端。
  6. 建立一个脚本农场,雇佣更多的工程师去加速任务的完成。让他们做这些表格的转移工作。
  7. 设计一个Pyres副本,一个到GitHub Resque队列的Python的接口,这个队列建立在Redis之上。支持优先级和重试,使用Pyres取代Celery和RabbitMQ更是让他们受益良多。
  8. 处理中会产生大量的错误,用户可能会发现类似丢失board的错误;必须重复的运行任务,以保证在数据的处理过程中不会出现暂时性的错误。

开发相关

  • 开始尝试只给开发者开放系统的一部分——他们每个人都拥有自己的MySQL服务器等,但是事情改变的太快,以至于这个模式根本无法实行。
  • 转变成Facebook模式,每个人都可以访问所有东西,所以不得不非常小心。

未来的方向

  • 基于服务的架构
  • 当他们发现大量的数据库负载,他们开始布置大量的应用程序服务器和一些其它的服务器,所有这些服务器都连接至MySQL和Memcache。这意味着在Memcache上将存在3万的连接,这些连接将占用几个G的内存,同时还会产生大量的Memcache守护进程。
  • 为了解决这个问题,将这些工作转移到了一个服务架构。比如:使用一个follower服务,这个服务将专注处理follower查询。这将接下30台左右的主机去连接数据库和缓存,从而减少了连接的数量。
  • 对功能进行隔离,各司其职。让一个服务的开发者不能访问其它的服务,从而杜绝安全隐患。

学到的知识

  1. 为了应对未来的问题,让其保持简单。
  2. 让其变的有趣。只要应用程序还在使用,就会有很多的工程师加入,过于复杂的系统将会让工作失去乐趣。让架构保持简单就是大的胜利,新的工程师从入职的第一周起就可以对项目有所贡献。
  3. 当你把事物用至极限时,这些技术都会以各自不同的方式发生故障。
  4. 如果你的架构应对增长所带来的问题时,只需要简单的投入更多的主机,那么你的架构含金量十足。
  5. 集群管理算法本身就用于处理SPOF,如果存在漏洞的话可能就会影响到每个节点。
  6. 为了快速的增长,你需要为每次负载增加的数据进行均匀分配。
  7. 在节点间传输的数据越少,你的架构越稳定。这也是他们弃集群而选择分片的原因。
  8. 一个面向服务的架构规则。拆分功能,可以帮助减少连接、组织团队、组织支持以及提升安全性。
  9. 搞明白自己究竟需要什么。为了匹配愿景,不要怕丢弃某些技术,甚至是整个系统的重构。
  10. 不要害怕丢失一点数据。将用户数据放入内存,定期的进行持久化。失去的只是几个小时的数据,但是换来的却是更简单、更强健的系统!

原文链接: Scaling Pinterest – From 0 To 10s Of Billions Of Page Views A Month In Two Years (编译/仲浩 审校/王旭东)

from:http://www.csdn.net/article/2013-04-16/2814902-how-pinterest-scaling-0-to-billions-pv

一次完整的HTTP请求与响应涉及了哪些知识

本文以HTTP请求和响应的过程来讲解涉及到的相关知识点。

一、 HTTP请求和响应步骤

一次完整的HTTP请求与响应涉及了哪些知识?

图片来自: 理解Http请求与响应

以上完整表示了HTTP请求和响应的7个步骤,下面从TCP/IP协议模型的角度来理解HTTP请求和响应如何传递的。

二、TCP/IP协议

TCP/IP协议模型(Transmission Control Protocol/Internet Protocol),包含了一系列构成互联网基础的网络协议,是Internet的核心协议,通过20多年的发展已日渐成熟,并被广泛应用于局域网和广域网中,目前已成为事实上的国际标准。TCP/IP协议簇是一组不同层次上的多个协议的组合,通常被认为是一个四层协议系统,与OSI的七层模型相对应。

HTTP协议就是基于TCP/IP协议模型来传输信息的。

一次完整的HTTP请求与响应涉及了哪些知识?

(1). 链路层

也称作数据链路层或网络接口层(在第一个图中为网络接口层和硬件层),通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡。它们一起处理与电缆(或其他任何传输媒介)的物理接口细节。ARP(地址解析协议)和RARP(逆地址解析协议)是某些网络接口(如以太网和令牌环网)使用的特殊协议,用来转换IP层和网络接口层使用的地址。

(2). 网络层

也称作互联网层(在第一个图中为网际层),处理分组在网络中的活动,例如分组的选路。在TCP/IP协议族中,网络层协议包括IP协议(网际协议),ICMP协议(Internet互联网控制报文协议),以及IGMP协议(Internet组管理协议)。

IP是一种网络层协议,提供的是一种不可靠的服务,它只是尽可能快地把分组从源结点送到目的结点,但是并不提供任何可靠性保证。同时被TCP和UDP使用。TCP和UDP的每组数据都通过端系统和每个中间路由器中的IP层在互联网中进行传输。

ICMP是IP协议的附属协议。IP层用它来与其他主机或路由器交换错误报文和其他重要信息。

IGMP是Internet组管理协议。它用来把一个UDP数据报多播到多个主机。

(3). 传输层

主要为两台主机上的应用程序提供端到端的通信。在TCP/IP协议族中,有两个互不相同的传输协议:TCP(传输控制协议)和UDP(用户数据报协议)。

TCP为两台主机提供高可靠性的数据通信。它所做的工作包括把应用程序交给它的数据分成合适的小块交给下面的网络层,确认接收到的分组,设置发送最后确认分组的超时时钟等。由于运输层提供了高可靠性的端到端的通信,因此应用层可以忽略所有这些细节。为了提供可靠的服务,TCP采用了超时重传、发送和接收端到端的确认分组等机制。

UDP则为应用层提供一种非常简单的服务。它只是把称作数据报的分组从一台主机发送到另一台主机,但并不保证该数据报能到达另一端。一个数据报是指从发送方传输到接收方的一个信息单元(例如,发送方指定的一定字节数的信息)。UDP协议任何必需的可靠性必须由应用层来提供。
(4). 应用层

应用层决定了向用户提供应用服务时通信的活动。TCP/IP 协议族内预存了各类通用的应用服务。包括 HTTP,FTP(File Transfer Protocol,文件传输协议),DNS(Domain Name System,域名系统)服务。

一次完整的HTTP请求与响应涉及了哪些知识?

当应用程序用TCP传送数据时,数据被送入协议栈中,然后逐个通过每一层直到被当作一串比特流送入网络。其中每一层对收到的数据都要增加一些首部信息(有时还要增加尾部信息),该过程如图所示。

一次完整的HTTP请求与响应涉及了哪些知识?

当目的主机收到一个以太网数据帧时,数据就开始从协议栈中由底向上升,同时去掉各层协议加上的报文首部。每层协议盒都要去检查报文首部中的协议标识,以确定接收数据的上层协议。这个过程称作分用(Demultiplexing)。协议是通过目的端口号、源I P地址和源端口号进行解包的。

通过以上步骤我们从TCP/IP模型的角度来理解了一次HTTP请求与响应的过程。

下面这张图更清楚明白:

一次完整的HTTP请求与响应涉及了哪些知识?

下面具体来看如何进行一步步操作的。

三、TCP三次握手

TCP是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接。在TCP/IP协议中,TCP协议提供可靠的连接服务,连接是通过三次握手进行初始化的。三次握手的目的是同步连接双方的序列号和确认号并交换 TCP窗口大小信息。

一次完整的HTTP请求与响应涉及了哪些知识?

第一次握手:建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;然后,客户端进入SYN_SEND状态,等待服务器的确认;

第二次握手:服务器收到SYN报文段。服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认,设置Acknowledgment Number为x+1(Sequence Number+1);同时,自己自己还要发送SYN请求信息,将SYN位置为1,Sequence Number为y;服务器端将上述所有信息放到一个报文段(即SYN+ACK报文段)中,一并发送给客户端,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK报文段。然后将Acknowledgment Number设置为y+1,向服务器发送ACK报文段,这个报文段发送完毕以后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手。

为什么要三次握手

为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。

具体例子:“已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”

四、HTTP协议

Http是什么?

通俗来讲,他就是计算机通过网络进行通信的规则,是一个基于请求与响应,无状态的,应用层的协议,常基于TCP/IP协议传输数据。目前任何终端(手机,笔记本电脑。。)之间进行任何一种通信都必须按照Http协议进行,否则无法连接。

四个基于:

请求与响应:客户端发送请求,服务器端响应数据

无状态的:协议对于事务处理没有记忆能力,客户端第一次与服务器建立连接发送请求时需要进行一系列的安全认证匹配等,因此增加页面等待时间,当客户端向服务器端发送请求,服务器端响应完毕后,两者断开连接,也不保存连接状态,一刀两断!恩断义绝!从此路人!下一次客户端向同样的服务器发送请求时,由于他们之前已经遗忘了彼此,所以需要重新建立连接。

应用层:Http是属于应用层的协议,配合TCP/IP使用。

TCP/IP:Http使用TCP作为它的支撑运输协议。HTTP客户机发起一个与服务器的TCP连接,一旦连接建立,浏览器(客户机)和服务器进程就可以通过套接字接口访问TCP。

针对无状态的一些解决策略:

有时需要对用户之前的HTTP通信状态进行保存,比如执行一次登陆操作,在30分钟内所有的请求都不需要再次登陆。于是引入了Cookie技术。

HTTP/1.1想出了持久连接(HTTP keep-alive)方法。其特点是,只要任意一端没有明确提出断开连接,则保持TCP连接状态,在请求首部字段中的Connection: keep-alive即为表明使用了持久连接。
等等还有很多。。。。。。

下面开始讲解重头戏:HTTP请求报文,响应报文,对应于上述步骤的2,3,4,5,6。

HTTP报文是面向文本的,报文中的每一个字段都是一些ASCII码串,各个字段的长度是不确定的。HTTP有两类报文:请求报文和响应报文。

五、HTTP请求报文

一个HTTP请求报文由请求行(request line)、请求头部(header)、空行和请求数据4个部分组成,下图给出了请求报文的一般格式。

一次完整的HTTP请求与响应涉及了哪些知识?

1.请求行

请求行分为三个部分:请求方法、请求地址和协议版本

请求方法

HTTP/1.1 定义的请求方法有8种:GET、POST、PUT、DELETE、PATCH、HEAD、OPTIONS、TRACE。

最常的两种GET和POST,如果是RESTful接口的话一般会用到GET、POST、DELETE、PUT。

请求地址

URL:统一资源定位符,是一种自愿位置的抽象唯一识别方法。

组成:<协议>://<主机>:<端口>/<路径>

端口和路径有时可以省略(HTTP默认端口号是80)

如下例:

一次完整的HTTP请求与响应涉及了哪些知识?

有时会带参数,GET请求

协议版本

协议版本的格式为:HTTP/主版本号.次版本号,常用的有HTTP/1.0和HTTP/1.1

2.请求头部

请求头部为请求报文添加了一些附加信息,由“名/值”对组成,每行一对,名和值之间使用冒号分隔。

常见请求头如下:

一次完整的HTTP请求与响应涉及了哪些知识?

请求头部的最后会有一个空行,表示请求头部结束,接下来为请求数据,这一行非常重要,必不可少。

3.请求数据

可选部分,比如GET请求就没有请求数据。

下面是一个POST方法的请求报文:

POST  /index.php HTTP/1.1    请求行
Host: localhost
User-Agent: Mozilla/5.0 (Windows NT 5.1; rv:10.0.2) Gecko/20100101 Firefox/10.0.2  请求头
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, /;q=0.8
Accept-Language: zh-cn,zh;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Referer: http://localhost/
Content-Length:25
Content-Type:application/x-www-form-urlencoded
空行
username=aa&password=1234  请求数据

六、HTTP响应报文

一次完整的HTTP请求与响应涉及了哪些知识?

HTTP响应报文主要由状态行、响应头部、空行以及响应数据组成。

1.状态行

由3部分组成,分别为:协议版本,状态码,状态码描述。

其中协议版本与请求报文一致,状态码描述是对状态码的简单描述,所以这里就只介绍状态码。

状态码

状态代码为3位数字。
1xx:指示信息–表示请求已接收,继续处理。
2xx:成功–表示请求已被成功接收、理解、接受。
3xx:重定向–要完成请求必须进行更进一步的操作。
4xx:客户端错误–请求有语法错误或请求无法实现。
5xx:服务器端错误–服务器未能实现合法的请求。

下面列举几个常见的:

一次完整的HTTP请求与响应涉及了哪些知识?

2.响应头部

与请求头部类似,为响应报文添加了一些附加信息

常见响应头部如下:

一次完整的HTTP请求与响应涉及了哪些知识?

3.响应数据

用于存放需要返回给客户端的数据信息。

下面是一个响应报文的实例:

HTTP/1.1 200 OK  状态行
Date: Sun, 17 Mar 2013 08:12:54 GMT  响应头部
Server: Apache/2.2.8 (Win32) PHP/5.2.5
X-Powered-By: PHP/5.2.5
Set-Cookie: PHPSESSID=c0huq7pdkmm5gg6osoe3mgjmm3; path=/
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Content-Length: 4393
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=utf-8
空行

<html>  响应数据
<head>
<title>HTTP响应示例<title>
</head>
<body>
Hello HTTP!
</body>
</html>

关于请求头部和响应头部的知识点很多,这里只是简单介绍。

通过以上步骤,数据已经传递完毕,HTTP/1.1会维持持久连接,但持续一段时间总会有关闭连接的时候,这时候据需要断开TCP连接。

七、TCP四次挥手

当客户端和服务器通过三次握手建立了TCP连接以后,当数据传送完毕,肯定是要断开TCP连接的啊。那对于TCP的断开连接,这里就有了神秘的“四次分手”。

一次完整的HTTP请求与响应涉及了哪些知识?

第一次分手:主机1(可以使客户端,也可以是服务器端),设置Sequence Number,向主机2发送一个FIN报文段;此时,主机1进入FIN_WAIT_1状态;这表示主机1没有数据要发送给主机2了;

第二次分手:主机2收到了主机1发送的FIN报文段,向主机1回一个ACK报文段,Acknowledgment Number为Sequence Number加1;主机1进入FIN_WAIT_2状态;主机2告诉主机1,我“同意”你的关闭请求;

第三次分手:主机2向主机1发送FIN报文段,请求关闭连接,同时主机2进入LAST_ACK状态;

第四次分手:主机1收到主机2发送的FIN报文段,向主机2发送ACK报文段,然后主机1进入TIME_WAIT状态;主机2收到主机1的ACK报文段以后,就关闭连接;此时,主机1等待2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,主机1也可以关闭连接了。

为什么要四次分手

TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工模式,这就意味着,当主机1发出FIN报文段时,只是表示主机1已经没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕了;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回ACK报文段时,表示它已经知道主机1没有数据发送了,但是主机2还是可以发送数据到主机1的;当主机2也发送了FIN报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会愉快的中断这次TCP连接。

通过以上步骤便完成了HTTP的请求和响应,进行了数据传递,这其中涉及到需要知识点,都进行了逐一了解。

参考文章:

你需要了解的HTTP知识都在这里了!
HTTP知识点总结
理解Http请求与响应
HTTP-请求、响应、缓存
你应该知道的HTTP基础知识
整理Http知识点
简析TCP的三次握手与四次分手
HTTP请求报文和HTTP响应报文
TCP/IP协议簇分层详解
HTTP请求报文和HTTP响应报文

from:http://www.shellsec.com/news/37745.html

扛住100亿次请求?我们来试一试

作者:ppmsn2005#gmail.com
项目: https://github.com/xiaojiaqi/10billionhongbaos
wiki: https://github.com/xiaojiaqi/10billionhongbaos/wiki/扛住100亿次请求?我们来试一试

1. 前言

前几天,偶然看到了 《扛住100亿次请求——如何做一个“有把握”的春晚红包系统”》(url)一文,看完以后,感慨良多,收益很多。正所谓他山之石,可以攻玉,虽然此文发表于2015年,我看到时已经是2016年末,但是其中的思想仍然是可以为很多后端设计借鉴,。同时作为一个工程师,看完以后又会思考,学习了这样的文章以后,是否能给自己的工作带来一些实际的经验呢?所谓纸上得来终觉浅,绝知此事要躬行,能否自己实践一下100亿次红包请求呢?否则读完以后脑子里能剩下的东西 不过就是100亿 1400万QPS整流 这样的字眼,剩下的文章将展示作者是如何以此过程为目标,在本地环境的模拟了此过程。

实现的目标: 单机支持100万连接,模拟了摇红包和发红包过程,单机峰值QPS 6万,平稳支持了业务。

注:本文以及作者所有内容,仅代表个人理解和实践,过程和微信团队没有任何关系,真正的线上系统也不同,只是从一些技术点进行了实践,请读者进行区分。因作者水平有限,有任何问题都是作者的责任,有问题请联系 ppmsn2005#gmail.com. 全文内容 扛住100亿次请求?我们来试一试

2. 背景知识

QPS: Queries per second 每秒的请求数目

PPS:Packets per second 每秒数据包数目

摇红包:客户端发出一个摇红包的请求,如果系统有红包就会返回,用户获得红包

发红包:产生一个红包里面含有一定金额,红包指定数个用户,每个用户会收到红包信息,用户可以发送拆红包的请求,获取其中的部分金额。

3. 确定目标

在一切系统开始以前,我们应该搞清楚我们的系统在完成以后,应该有一个什么样的负载能力。

3.1 用户总数:

通过文章我们可以了解到接入服务器638台, 服务上限大概是14.3亿用户, 所以单机负载的用户上限大概是14.3亿/638台=228万用户/台。但是目前中国肯定不会有14亿用户同时在线,参考 http://qiye.qianzhan.com/show/detail/160818-b8d1c700.html 的说法,2016年Q2 微信用户大概是8亿,月活在5.4 亿左右。所以在2015年春节期间,虽然使用的用户会很多,但是同时在线肯定不到5.4亿。

3.2. 服务器数量:

一共有638台服务器,按照正常运维设计,我相信所有服务器不会完全上线,会有一定的硬件冗余,来防止突发硬件故障。假设一共有600台接入服务器。

3.3 单机需要支持的负载数:

每台服务器支持的用户数:5.4亿/600 = 90万。也就是平均单机支持90万用户。如果真实情况比90万更多,则模拟的情况可能会有偏差,但是我认为QPS在这个实验中更重要。

3.4. 单机峰值QPS:

文章中明确表示为1400万QPS.这个数值是非常高的,但是因为有600台服务器存在,所以单机的QPS为 1400万/600= 约为2.3万QPS, 文章曾经提及系统可以支持4000万QPS,那么系统的QPS 至少要到4000万/600 = 约为 6.6万, 这个数值大约是目前的3倍,短期来看并不会被触及。但是我相信应该做过相应的压力测试。

3.5. 发放红包:

文中提到系统以5万个每秒的下发速度,那么单机每秒下发速度50000/600 =83个/秒,也就是单机系统应该保证每秒以83个的速度下发即可。
最后考虑到系统的真实性,还至少有用户登录的动作,拿红包这样的业务。真实的系统还会包括聊天这样的服务业务。

最后整体的看一下 100亿次摇红包这个需求,假设它是均匀地发生在春节联欢晚会的4个小时里,那么服务器的QPS 应该是10000000000/600/3600/4.0=1157. 也就是单机每秒1000多次,这个数值其实并不高。如果完全由峰值速度1400万消化 10000000000/(1400*10000) = 714秒,也就是说只需要峰值坚持11分钟,就可以完成所有的请求。可见互联网产品的一个特点就是峰值非常高,持续时间并不会很长。

总结:

从单台服务器看.它需要满足下面一些条件
1. 支持至少100万连接用户
2. 每秒至少能处理2.3万的QPS,这里我们把目标定得更高一些 分别设定到了3万和6万。
3. 摇红包:支持每秒83个的速度下发放红包,也就是说每秒有2.3万次摇红包的请求,其中83个请求能摇到红包,其余的2.29万次请求会知道自己没摇到。当然客户端在收到红包以后,也需要确保客户端和服务器两边的红包数目和红包内的金额要一致。因为没有支付模块,所以我们也把要求提高一倍,达到200个红包每秒的分发速度
4. 支持用户之间发红包业务,确保收发两边的红包数目和红包内金额要一致。同样也设定200个红包每秒的分发速度为我们的目标。

想完整模拟整个系统实在太难了,首先需要海量的服务器,其次需要上亿的模拟客户端。这对我来说是办不到,但是有一点可以确定,整个系统是可以水平扩展的,所以我们可以模拟100万客户端,在模拟一台服务器 那么就完成了1/600的模拟。

和现有系统区别:
和大部分高QPS测试的不同,本系统的侧重点有所不同。我对2者做了一些对比。

常见高QPS系统压力测试 本系统压力测试
连接数 一般<1000 (几百以内) 1000000 (1百万)
单连接吞吐量 非常大 每个连接几十M字节吞吐 非常小 每个连接每次几十个字节
需要的IO次数 不多 非常多

4. 基础软件和硬件

4.1软件:

Golang 1.8r3 , shell, python (开发没有使用c++ 而是使用了golang, 是因为使用golang 的最初原型达到了系统要求。虽然golang 还存在一定的问题,但是和开发效率比,这点损失可以接受)
服务器操作系统:
Ubuntu 12.04
客户端操作系统:
debian 5.0

4.2硬件环境

服务端: dell R2950。 8核物理机,非独占有其他业务在工作,16G内存。这台硬件大概是7年前的产品,性能应该不是很高要求。
服务器硬件版本:
machine
服务器CPU信息:
cpu

客户端: esxi 5.0 虚拟机,配置为4核 5G内存。一共17台,每台和服务器建立6万个连接。完成100万客户端模拟

5. 技术分析和实现

5.1) 单机实现100万用户连接

这一点来说相对简单,笔者在几年前就早完成了单机百万用户的开发以及操作。现代的服务器都可以支持百万用户。相关内容可以查看   github代码以及相关文档。
https://github.com/xiaojiaqi/C1000kPracticeGuide
系统配置以及优化文档:
https://github.com/xiaojiaqi/C1000kPracticeGuide/tree/master/docs/cn

5.2) 3万QPS

这个问题需要分2个部分来看客户端方面和服务器方面。

客户端QPS

因为有100万连接连在服务器上,QPS为3万。这就意味着每个连接每33秒,就需要向服务器发一个摇红包的请求。因为单IP可以建立的连接数为6万左右, 有17台服务器同时模拟客户端行为。我们要做的就保证在每一秒都有这么多的请求发往服务器即可。
其中技术要点就是客户端协同。但是各个客户端的启动时间,建立连接的时间都不一致,还存在网络断开重连这样的情况,各个客户端如何判断何时自己需要发送请求,各自该发送多少请求呢?

我是这样解决的:利用NTP服务,同步所有的服务器时间,客户端利用时间戳来判断自己的此时需要发送多少请求。
算法很容易实现:
假设有100万用户,则用户id 为0-999999.要求的QPS为5万, 客户端得知QPS为5万,总用户数为100万,它计算 100万/5万=20,所有的用户应该分为20组,如果 time() % 20 == 用户id % 20,那么这个id的用户就该在这一秒发出请求,如此实现了多客户端协同工作。每个客户端只需要知道 总用户数和QPS 就能自行准确发出请求了。
(扩展思考:如果QPS是3万 这样不能被整除的数目,该如何办?如何保证每台客户端发出的请求数目尽量的均衡呢?)

服务器QPS

服务器端的QPS相对简单,它只需要处理客户端的请求即可。但是为了客观了解处理情况,我们还需要做2件事情。
第一: 需要记录每秒处理的请求数目,这需要在代码里埋入计数器。
第二: 我们需要监控网络,因为网络的吞吐情况,可以客观的反映出QPS的真实数据。为此,我利用python脚本 结合ethtool 工具编写了一个简单的工具,通过它我们可以直观的监视到网络的数据包通过情况如何。它可以客观的显示出我们的网络有如此多的数据传输在发生。
工具截图: 工具截图

5.3) 摇红包业务

摇红包的业务非常简单,首先服务器按照一定的速度生产红包。红包没有被取走的话,就堆积在里面。服务器接收一个客户端的请求,如果服务器里现在有红包就会告诉客户端有,否则就提示没有红包。
因为单机每秒有3万的请求,所以大部分的请求会失败。只需要处理好锁的问题即可。
我为了减少竞争,将所有的用户分在了不同的桶里。这样可以减少对锁的竞争。如果以后还有更高的性能要求,还可以使用 高性能队列——Disruptor来进一步提高性能。

注意,在我的测试环境里是缺少支付这个核心服务的,所以实现的难度是大大的减轻了。另外提供一组数字:2016年淘宝的双11的交易峰值仅仅为12万/秒,微信红包分发速度是5万/秒,要做到这点是非常困难的。(http://mt.sohu.com/20161111/n472951708.shtml)

5.4) 发红包业务

发红包的业务很简单,系统随机产生一些红包,并且随机选择一些用户,系统向这些用户提示有红包。这些用户只需要发出拆红包的请求,系统就可以随机从红包中拆分出部分金额,分给用户,完成这个业务。同样这里也没有支付这个核心服务。

5.5)监控

最后 我们需要一套监控系统来了解系统的状况,我借用了我另一个项目(https://github.com/xiaojiaqi/fakewechat) 里的部分代码完成了这个监控模块,利用这个监控,服务器和客户端会把当前的计数器内容发往监控,监控需要把各个客户端的数据做一个整合和展示。同时还会把日志记录下来,给以后的分析提供原始数据。 线上系统更多使用opentsdb这样的时序数据库,这里资源有限,所以用了一个原始的方案

监控显示日志大概这样
监控日志

6. 代码实现及分析

在代码方面,使用到的技巧实在不多,主要是设计思想和golang本身的一些问题需要考虑。
首先golang的goroutine 的数目控制,因为至少有100万以上的连接,所以按照普通的设计方案,至少需要200万或者300万的goroutine在工作。这会造成系统本身的负担很重。
其次就是100万个连接的管理,无论是连接还是业务都会造成一些心智的负担。
我的设计是这样的:

架构图

首先将100万连接分成多个不同的SET,每个SET是一个独立,平行的对象。每个SET 只管理几千个连接,如果单个SET 工作正常,我只需要添加SET就能提高系统处理能力。
其次谨慎的设计了每个SET里数据结构的大小,保证每个SET的压力不会太大,不会出现消息的堆积。
再次减少了gcroutine的数目,每个连接只使用一个goroutine,发送消息在一个SET里只有一个gcroutine负责,这样节省了100万个goroutine。这样整个系统只需要保留 100万零几百个gcroutine就能完成业务。大量的节省了cpu 和内存
系统的工作流程大概如下:
每个客户端连接成功后,系统会分配一个goroutine读取客户端的消息,当消息读取完成,将它转化为消息对象放至在SET的接收消息队列,然后返回获取下一个消息
在SET内部,有一个工作goroutine,它只做非常简单而高效的事情,它做的事情如下,检查SET的接受消息,它会收到3类消息

1, 客户端的摇红包请求消息

2, 客户端的其他消息 比如聊天 好友这一类

3, 服务器端对客户端消息的回应

对于 第1种消息 客户端的摇红包请求消息 是这样处理的,从客户端拿到摇红包请求消息,试图从SET的红包队列里 获取一个红包,如果拿到了就把红包信息 返回给客户端,否则构造一个没有摇到的消息,返回给对应的客户端。
对于第2种消息 客户端的其他消息 比如聊天 好友这一类,只需简单地从队列里拿走消息,转发给后端的聊天服务队列即可,其他服务会把消息转发出去。
对于第3种消息 服务器端对客户端消息的回应。SET 只需要根据消息里的用户id,找到SET里保留的用户连接对象,发回去就可以了。

对于红包产生服务,它的工作很简单,只需要按照顺序在轮流在每个SET的红包产生对列里放至红包对象就可以了。这样可以保证每个SET里都是公平的,其次它的工作强度很低,可以保证业务稳定。

见代码
https://github.com/xiaojiaqi/10billionhongbaos

7实践

实践的过程分为3个阶段

阶段1:

分别启动服务器端和监控端,然后逐一启动17台客户端,让它们建立起100万的链接。在服务器端,利用ss 命令 统计出每个客户端和服务器建立了多少连接。
命令如下:
Alias ss2=Ss –ant | grep 1025 | grep EST | awk –F: “{print \$8}” | sort | uniq –c’

结果如下: 100万连接建立

阶段2:

利用客户端的http接口,将所有的客户端QPS 调整到3万,让客户端发出3W QPS强度的请求。
运行如下命令:
启动脚本

观察网络监控和监控端反馈,发现QPS 达到预期数据
网络监控截图
3万qps

在服务器端启动一个产生红包的服务,这个服务会以200个每秒的速度下发红包,总共4万个。此时观察客户端在监控上的日志,会发现基本上以200个每秒的速度获取到红包。

摇红包

等到所有红包下发完成后,再启动一个发红包的服务,这个服务系统会生成2万个红包,每秒也是200个,每个红包随机指定3位用户,并向这3个用户发出消息,客户端会自动来拿红包,最后所有的红包都被拿走。

发红包

阶段3

利用客户端的http接口,将所有的客户端QPS 调整到6万,让客户端发出6W QPS强度的请求。

6wqps

如法炮制,在服务器端,启动一个产生红包的服务,这个服务会以200个每秒的速度下发红包。总共4万个。此时观察客户端在监控上的日志,会发现基本上以200个每秒的速度获取到红包。
等到所有红包下发完成后,再启动一个发红包的服务,这个服务系统会生成2万个红包,每秒也是200个,每个红包随机指定3位用户,并向这3个用户发出消息,客户端会自动来拿红包,最后所有的红包都被拿走。

最后,实践完成。

8 分析数据

在实践过程中,服务器和客户端都将自己内部的计数器记录发往监控端,成为了日志。我们利用简单python 脚本和gnuplt 绘图工具,将实践的过程可视化,由此来验证运行过程。

第一张是 客户端的QPS发送数据
客户端qps
这张图的横坐标是时间,单位是秒,纵坐标是QPS,表示这时刻所有客户端发送的请求的QPS。
图的第一区间,几个小的峰值,是100万客户端建立连接的, 图的第二区间是3万QPS 区间,我们可以看到数据 比较稳定的保持在3万这个区间。最后是6万QPS区间。但是从整张图可以看到QPS不是完美地保持在我们希望的直线上。这主要是以下几个原因造成的

  1. 当非常多goroutine 同时运行的时候,依靠sleep 定时并不准确,发生了偏移。我觉得这是golang本身调度导致的。当然如果cpu比较强劲,这个现象会消失。
  2. 因为网络的影响,客户端在发起连接时,可能发生延迟,导致在前1秒没有完成连接。
  3. 服务器负载较大时,1000M网络已经出现了丢包现象,可以通过ifconfig 命令观察到这个现象,所以会有QPS的波动。

第二张是 服务器处理的QPS图
服务器qps

和客户端的向对应的,服务器也存在3个区间,和客户端的情况很接近。但是我们看到了在大概22:57分,系统的处理能力就有一个明显的下降,随后又提高的尖状。这说明代码还需要优化。

整体观察在3万QPS区间,服务器的QPS比较稳定,在6万QSP时候,服务器的处理就不稳定了。我相信这和我的代码有关,如果继续优化的话,还应该能有更好的效果。

将2张图合并起来 qps

基本是吻合的,这也证明系统是符合预期设计的。

这是红包生成数量的状态变化图
生成红包

非常的稳定。

这是客户端每秒获取的摇红包状态
获取红包

可以发现3万QPS区间,客户端每秒获取的红包数基本在200左右,在6万QPS的时候,以及出现剧烈的抖动,不能保证在200这个数值了。我觉得主要是6万QPS时候,网络的抖动加剧了,造成了红包数目也在抖动。

最后是golang 自带的pprof 信息,其中有gc 时间超过了10ms, 考虑到这是一个7年前的硬件,而且非独占模式,所以还是可以接受。
pprof

总结:

按照设计目标,我们模拟和设计了一个支持100万用户,并且每秒至少可以支持3万QPS,最多6万QPS的系统,简单模拟了微信的摇红包和发红包的过程。可以说达到了预期的目的。
如果600台主机每台主机可以支持6万QPS,只需要7分钟就可以完成 100亿次摇红包请求。

虽然这个原型简单地完成了预设的业务,但是它和真正的服务会有哪些差别呢?我罗列了一下

区别 真正服务 本次模拟
业务复杂 更复杂 非常简单
协议 Protobuf 以及加密 简单的协议
支付 复杂
日志 复杂
性能 更高
用户分布 用户id分散在不同服务器,需要hash以后统一, 复杂。 用户id 连续,很多优化使代码简单 非常高效
安全控制 复杂
热更新及版本控制 复杂
监控 细致 简单

Refers:

分布式系统中唯一 ID 的生成方法

本文主要介绍在一个分布式系统中, 怎么样生成全局唯一的 ID

一, 问题描述

在分布式系统存在多个 Shard 的场景中, 同时在各个 Shard 插入数据时, 怎么给这些数据生成全局的 unique ID?

在单机系统中 (例如一个 MySQL 实例), unique ID 的生成是非常简单的, 直接利用 MySQL 自带的自增 ID 功能就可以实现.

但在一个存在多个 Shards 的分布式系统 (例如多个 MySQL 实例组成一个集群, 在这个集群中插入数据), 这个问题会变得复杂, 所生成的全局的 unique ID 要满足以下需求:

  1. 保证生成的 ID 全局唯一
  2. 今后数据在多个 Shards 之间迁移不会受到 ID 生成方式的限制
  3. 生成的 ID 中最好能带上时间信息, 例如 ID 的前 k 位是 Timestamp, 这样能够直接通过对 ID 的前 k 位的排序来对数据按时间排序
  4. 生成的 ID 最好不大于 64 bits
  5. 生成 ID 的速度有要求. 例如, 在一个高吞吐量的场景中, 需要每秒生成几万个 ID (Twitter 最新的峰值到达了 143,199 Tweets/s, 也就是 10万+/秒)
  6. 整个服务最好没有单点

如果没有上面这些限制, 问题会相对简单, 例如:

  1. 直接利用 UUID.randomUUID() 接口来生成 unique ID (http://www.ietf.org/rfc/rfc4122.txt). 但这个方案生成的 ID 有 128 bits, 另外, 生成的 ID 中也没有带 Timestamp
  2. 利用一个中心服务器来统一生成 unique ID. 但这种方案可能存在单点问题; 另外, 要支持高吞吐率的系统, 这个方案还要做很多改进工作 (例如, 每次从中心服务器批量获取一批 IDs, 提升 ID 产生的吞吐率)
  3. Flickr 的做法 (http://code.flickr.net/2010/02/08/ticket-servers-distributed-unique-primary-keys-on-the-cheap/). 但他这个方案 ID 中没有带 Timestamp, 生成的 ID 不能按时间排序

在要满足前面 6 点要求的场景中, 怎么来生成全局 unique ID 呢?

Twitter 的 Snowflake 是一种比较好的做法. 下面主要介绍 Twitter Snowflake, 以及它的变种

二, Twitter Snowflake

https://github.com/twitter/snowflake

Snowflake 生成的 unique ID 的组成 (由高位到低位):

  • 41 bits: Timestamp (毫秒级)
  • 10 bits: 节点 ID (datacenter ID 5 bits + worker ID 5 bits)
  • 12 bits: sequence number

一共 63 bits (最高位是 0)

unique ID 生成过程:

  • 10 bits 的机器号, 在 ID 分配 Worker 启动的时候, 从一个 Zookeeper 集群获取 (保证所有的 Worker 不会有重复的机器号)
  • 41 bits 的 Timestamp: 每次要生成一个新 ID 的时候, 都会获取一下当前的 Timestamp, 然后分两种情况生成 sequence number:
  • 如果当前的 Timestamp 和前一个已生成 ID 的 Timestamp 相同 (在同一毫秒中), 就用前一个 ID 的 sequence number + 1 作为新的 sequence number (12 bits); 如果本毫秒内的所有 ID 用完, 等到下一毫秒继续 (这个等待过程中, 不能分配出新的 ID)
  • 如果当前的 Timestamp 比前一个 ID 的 Timestamp 大, 随机生成一个初始 sequence number (12 bits) 作为本毫秒内的第一个 sequence number

整个过程中, 只是在 Worker 启动的时候会对外部有依赖 (需要从 Zookeeper 获取 Worker 号), 之后就可以独立工作了, 做到了去中心化.

异常情况讨论:

  • 在获取当前 Timestamp 时, 如果获取到的时间戳比前一个已生成 ID 的 Timestamp 还要小怎么办? Snowflake 的做法是继续获取当前机器的时间, 直到获取到更大的 Timestamp 才能继续工作 (在这个等待过程中, 不能分配出新的 ID)

从这个异常情况可以看出, 如果 Snowflake 所运行的那些机器时钟有大的偏差时, 整个 Snowflake 系统不能正常工作 (偏差得越多, 分配新 ID 时等待的时间越久)

从 Snowflake 的官方文档 (https://github.com/twitter/snowflake/#system-clock-dependency) 中也可以看到, 它明确要求 “You should use NTP to keep your system clock accurate”. 而且最好把 NTP 配置成不会向后调整的模式. 也就是说, NTP 纠正时间时, 不会向后回拨机器时钟.

三, Snowflake 的其他变种

Snowflake 有一些变种, 各个应用结合自己的实际场景对 Snowflake 做了一些改动. 这里主要介绍 3 种.

1. Boundary flake

http://boundary.com/blog/2012/01/12/flake-a-decentralized-k-ordered-unique-id-generator-in-erlang/

变化:

  • ID 长度扩展到 128 bits:
  • 最高 64 bits 时间戳;
  • 然后是 48 bits 的 Worker 号 (和 Mac 地址一样长);
  • 最后是 16 bits 的 Seq Number
  • 由于它用 48 bits 作为 Worker ID, 和 Mac 地址的长度一样, 这样启动时不需要和 Zookeeper 通讯获取 Worker ID. 做到了完全的去中心化
  • 基于 Erlang

它这样做的目的是用更多的 bits 实现更小的冲突概率, 这样就支持更多的 Worker 同时工作. 同时, 每毫秒能分配出更多的 ID

2. Simpleflake

http://engineering.custommade.com/simpleflake-distributed-id-generation-for-the-lazy/

Simpleflake 的思路是取消 Worker 号, 保留 41 bits 的 Timestamp, 同时把 sequence number 扩展到 22 bits;

Simpleflake 的特点:

  • sequence number 完全靠随机产生 (这样也导致了生成的 ID 可能出现重复)
  • 没有 Worker 号, 也就不需要和 Zookeeper 通讯, 实现了完全去中心化
  • Timestamp 保持和 Snowflake 一致, 今后可以无缝升级到 Snowflake

Simpleflake 的问题就是 sequence number 完全随机生成, 会导致生成的 ID 重复的可能. 这个生成 ID 重复的概率随着每秒生成的 ID 数的增长而增长.

所以, Simpleflake 的限制就是每秒生成的 ID 不能太多 (最好小于 100次/秒, 如果大于 100次/秒的场景, Simpleflake 就不适用了, 建议切换回 Snowflake).

3. instagram 的做法

先简单介绍一下 instagram 的分布式存储方案:

  • 先把每个 Table 划分为多个逻辑分片 (logic Shard), 逻辑分片的数量可以很大, 例如 2000 个逻辑分片
  • 然后制定一个规则, 规定每个逻辑分片被存储到哪个数据库实例上面; 数据库实例不需要很多. 例如, 对有 2 个 PostgreSQL 实例的系统 (instagram 使用 PostgreSQL); 可以使用奇数逻辑分片存放到第一个数据库实例, 偶数逻辑分片存放到第二个数据库实例的规则
  • 每个 Table 指定一个字段作为分片字段 (例如, 对用户表, 可以指定 uid 作为分片字段)
  • 插入一个新的数据时, 先根据分片字段的值, 决定数据被分配到哪个逻辑分片 (logic Shard)
  • 然后再根据 logic Shard 和 PostgreSQL 实例的对应关系, 确定这条数据应该被存放到哪台 PostgreSQL 实例上

instagram unique ID 的组成:

  • 41 bits: Timestamp (毫秒)
  • 13 bits: 每个 logic Shard 的代号 (最大支持 8 x 1024 个 logic Shards)
  • 10 bits: sequence number; 每个 Shard 每毫秒最多可以生成 1024 个 ID

生成 unique ID 时, 41 bits 的 Timestamp 和 Snowflake 类似, 这里就不细说了.

主要介绍一下 13 bits 的 logic Shard 代号 和 10 bits 的 sequence number 怎么生成.

logic Shard 代号:

  • 假设插入一条新的用户记录, 插入时, 根据 uid 来判断这条记录应该被插入到哪个 logic Shard 中.
  • 假设当前要插入的记录会被插入到第 1341 号 logic Shard 中 (假设当前的这个 Table 一共有 2000 个 logic Shard)
  • 新生成 ID 的 13 bits 段要填的就是 1341 这个数字

sequence number 利用 PostgreSQL 每个 Table 上的 auto-increment sequence 来生成:

  • 如果当前表上已经有 5000 条记录, 那么这个表的下一个 auto-increment sequence 就是 5001 (直接调用 PL/PGSQL 提供的方法可以获取到)
  • 然后把 这个 5001 对 1024 取模就得到了 10 bits 的 sequence number

instagram 这个方案的优势在于:

  • 利用 logic Shard 号来替换 Snowflake 使用的 Worker 号, 就不需要到中心节点获取 Worker 号了. 做到了完全去中心化
  • 另外一个附带的好处就是, 可以通过 ID 直接知道这条记录被存放在哪个 logic Shard 上

同时, 今后做数据迁移的时候, 也是按 logic Shard 为单位做数据迁移的, 所以这种做法也不会影响到今后的数据迁移

from:http://blog.jobbole.com/110064/

消息系统在微服务间通讯的数据一致性

微服务是当下的热门话题,今天来聊下微服务中的一个敏感话题:如何保证微服务的数据一致性。谈到分布式事务,就避免不了CAP理论。

 

CAP理论是指对于一个分布式计算系统来说,不可能同时满足以下三点:

1. 一致性(Consistence) (等同于所有节点访问同一份最新的数据副本)

2. 可用性(Availability)(对数据更新具备高可用性)

3. 容忍网络分区(Partition tolerance)(以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。)

根据定理,分布式系统只能满足三项中的两项而不可能满足全部三项。以上关于CAP的理论介绍来自维基百科。同理,如何保证微服务间的数据一致性也一直是一个持续的话题,其实就是 如何在这三者中做一个权衡

就之前此公众号已经有一系列的文章来讨论,关于微服务架构下的事务一致性的话题,包括 BASE理论,两阶段提交,三阶段提交,可靠事件模式,TCC模式,补偿模式等,想进一步了解的话可以参考这里:微服务架构下的数据一致性保证(一),微服务架构下的数据一致性保证(二),微服务架构下的数据一致性保证(三)。今天只是谈一谈其中的一种场景:使用消息系统进行微服务间通讯,如何来保证微服务间的数据一致性。

1. 问题的引出:

微服务架构之数据一致性问题

这里我们先以下面的一个例子来引出问题:以 公有云市场1中的一个部署产品来说,当用户想要部署一个公有云中已有的产品,比如Redis产品,用户会先去公有云市场中找到对应的Redis产品,当用户点击发布时,市场中会进行相应的记录,同时后台有真正负责部署的模块,此处我们叫部署模块。当产品部署成功后,部署模块和市场都会进行最终状态的同步。

1、公有云市场:此处指一个简单的模型,类似阿里云的云镜像市场或亚马逊aws中的镜像市场。在云镜像市场中,用户会选择其中感兴趣的产品比如mysql,然后进行付费,发布,这样省去了用户在自己的云平台环境中手动下载安装包,然后安装,配置,启动等一系列繁琐的过程。在云平台市场中,用户所需要做的只是一些必要的配置,然后点击启动就能完成一个产品的发布。一般都是这样一个先购买镜像后启动实例的过程。

以上都是在理想的情况下进行的,大致流程如下图:

此时,市场和部署模块都是是独立的微服务,当平台用户申请开通产品后,公有云市场会先进行一系列的初始化工作,并向部署模块中发送部署请求,当部署模块部署成功或者失败后,会进行相应的记录,市场也会将状态记录到本地数据库。由于市场和部署都是以微服务形式存在,都有自己的本地事务,此时,我们已经无法通过本地事务的控制来保证操作的原子性了。那么问题就随之而来:

假如市场模块在向部署模块发送完请求之后,市场微服务出现了数据库的连接异常(比如连接数据库的网络异常,数据库漂移等),此时市场会向前端报错,提示部署过程中出错,导致部署失败,但实际上部署模块已经在后台默默的为用户开通了实例。
同样的问题也会出现在,当向部署模块发送完请求后市场微服务出现了宕机等意外情况,市场微服务的数据库中干脆直接没有保存用户的此次开通的请求,但实际上部署模块却已经在这个过程中开通过了产品实例。

如果公有云平台对用户资源的实例限制是5个,即一个用户(比如试用版的用户)最多只能开通5个产品实例,则用户此时在市场中最多只能开4个,因为有一个实例在部署模块成功部署,但是市场模块却并不清楚,此时就出现了数据不一致的严重问题。那么该如何解决此类问题呢?如何解决这类业务前后不一致的问题呢?

2. 引入消息框架,解决数据不一致问题

这里我们采用了 消息通信框架Kafka,通过事件机制来完成相应的需求。

在采用Kafka来完成消息的投递的同时,不可避免地也会面对消息的丢失的意外情况。这里我们先来看一下我们实现的主场景,然后在后面我们会接着探讨,如何在业务层面保证消息的绝对投递和消费。

消息发送方的处理

流程处理如下:

我们来分析一下此种设计如何能够满足我们的需求:

市场模块操作Product和Event是在本地事务进行,保证了本地操作的一致性。

如果开通产品时,市场领域在事件发布之前就发生了异常,宕机或者数据库无法连接,根据设计,事件发布定时器和开通产品的Service是分离操作,此时发生宕机等意外事件,并不会影响数据库中的数据,并 在下次服务器正常后事件发布定时器会去Event表中查找尚未发布的数据进行发布并更新消息状态为PUBLISHED.

如果是在更新库中的状态时发生了意外呢?此时消息已经发出到Kafka broker,则下次服务正常时,会将这些消息重新发送,但是因为有了Key的唯一性,部署模块判断这些是重复数据,直接忽略即可。

当产品部署成功后,Market事件监听器收到通知,准备更新数据库时发生了意外宕机等,下次服务正常启动后事件监听器会从上次的消息偏移量处进行监听并更新Event表。

消息接收方的处理

下面我们来看一下消息的接收方部署模块如何处理从Kafka Broker接收到的消息呢?

以下是部署模块对消息处理的流程图,此处部署模块的部署过程使用了简略的示意图。实际的场景中,部署动作以及更新状态是一个复杂的过程,同时可能依赖轮询来完成操作。

部署模块的事件监听器,在收到通知后,直接调用部署的Service,更新Deploy_table表中的业务逻辑,同时更新Event_Table中的消息状态。另一方面, 部署模块的 Event定时器,也会定时从Event_Table中读取信息并将结果发布到Kafka Broker, 市场模块收到通知后进行自己的业务操作。

至于采用这种模式的原理以及原因和市场领域类似,这里不再赘述。

3.引入补偿+幂等机制,

保证消息投递的可靠性

刚才也谈到,Kafka等市面上的大多数消息系统本身是无法保证消息投递的可靠性的。所以,我们也必须要从业务上对消息的意外情况进行保证。下面,我们探讨一下如何从业务上来保证消息投递的绝对可靠呢?

这里,我们就要引入 补偿机制+幂等操作,我们在前面的步骤中已经将Event进行了数据库持久化,我们还需要以下几个步骤来从业务上对消息的绝对可靠进行保证:

一、完善事件表字段

我们在Event表中增加两个新的字段count和updateTime,用来标识此消息发送或者重试的次数。正常情况下,count为1,表示只发送一次。

二、定时补偿加错误重试

同时 使用异常事件发布定时器,每隔2分钟(此时间只是一个示例,实际应用中应大于业务中正常业务处理逻辑的时间)去Event表中查询状态为PUBLISHED的消息,如果对应的消息记录更新时间为两分钟之前的时间,我们就悲观的认为此消息丢失,进行消息的重发,同时更新字段updateTime并将count计数加1。

三、最后一道防线:对账记录,人工干预

如果发现重发次数已经大于5,则认为此时已经无法依靠消息系统来完成此消息的投递,需要最后的一道保障,就是记录下来并在日常进行的人工对账中人工审核。

 

四、幂等去重

何为幂等呢?因为存在重试和错误补偿机制,不可避免的在系统中存在重复收到消息的场景,接口的幂等性能提高数据的一致性.在编程中,一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。

由于我们的定时补偿机制,消息的消费端也应该保证部署服务的操作是幂等的,即针对同一条消息多次发送的情况,我们应该保证这个消息实际上只会执行一次。这里如果发现消息是重复发送的,则直接将数据库中的执行结果读出并将结果推送到broker中,从而保证了消息的幂等性。

现在我们来分析一下此种策略如何保证的消息的绝对投递:

每条消息的产生都会在数据库中进行记录,保证消息的不丢失。

异常消息发布定时器会定时去Event表中查看异常消息,发现没有回应的数据则认为消息丢失,进行消息补偿,重新发送,如果连续5次依然失败则认为发生了异常,进行记录并人工干预对账。

对于部署模块(消息的消费端),如果消息丢失,则市场模块就无法收到回应(对应的Event表记录中的状态也不会修改),最终效果也会同#2情况,市场模块进行消息重发,如果重发次数超出了限制则会触发对账记录的业务逻辑。

4. 总结

本文通过采用消息系统进行微服务间的通信,加上一些设计上的变更,既保证了正常情况下(99.9%以上的情况)的逻辑的正确执行,也保证了极端情况下的数据一致性,满足了我们的业务需求,同时依赖市面上消息中间件强大的功能,极大的提高了系统的吞吐量。

针对Kafka等本身不可靠的问题,我们又通过修改业务场景的设计来保证了在极端情况下消息丢失时消息的可靠性,对应的也保证了业务的可靠性。此处只是以Kafka举例,如果是顾虑Kafka的本身消息不可靠的限制,可以考虑使用RabbitMQ或RocketMQ等市面上流行的消息通信框架。

概括来说,此方案主要保证了以下4个维度的一致性:

本地事务保证了业务持久化与消息持久化的一致性。

定时器保证了消息持久与消息投递的一致性。

消息中间件保证了消息的投递和消费的一致性。

业务补偿+幂等保证了消息失败下的一致性。

使用此种方案的弊端就是编码会大幅增加,为不同的微服务间增加不少额外的工作量,同时会产生较多的中间状态。对于业务中时间要求苛刻的场景,此方案不合适。(此处却符合本文中举例的场景,因为产品的开通,需要对容器进行操作,本身就是一个耗时的过程。)

数据一致性是微服务架构设计中唯恐避之不及却又不得不考虑的话题。通过保证最终数据的一致性,也是对CAP理论的一个折衷妥协方案,关于此方案的优劣,也不能简单的一言而概之,而是应该根据场景定夺,适合的才是最好的。

所以,我们在对微服务进行业务划分的时候就尽可能的避免“可能会产生一致性问题”的设计。如果这种设计过多,也许是时候考虑改改设计了。

from:http://windpoplar.iteye.com/blog/2353205