Category Archives: ML&DL

机器学习工程师必知的十大算法

毫无疑问,机器学习/人工智能的子领域在过去几年越来越受欢迎。目前大数据在科技行业已经炙手可热,而基于大量数据来进行预测或者得出建议的机器学习无疑是非常强大的。一些最常见的机器学习例子,比如Netflix的算法可以根据你以前看过的电影来进行电影推荐,而Amazon的算法则可以根据你以前买过的书来推荐书籍。

所以如果你想了解更多有关机器学习的内容,那么你该如何入门?对于我来说,我的入门课程是我在哥本哈根出国留学时参加的人工智能课。当时我的讲师是丹麦技术大学(Technical University of Denmark)的应用数学和计算机科学的全职教授,他的研究方向是逻辑与人工智能,侧重于使用逻辑学来对人性化的规划、推理和解决问题进行建模。这个课程包括对理论/核心概念的讨论和自己动手解决问题。我们使用的教材是AI经典之一:Peter Norvig的Artificial Intelligence—A Modern Approach(中文译本:《人工智能:一种现代的方法》),这本书主要讲了智能体、搜索解决问题、对抗搜索、概率论、多智能体系统、社会AI和AI的哲学/伦理/未来等等。在课程结束时,我们三个人的团队实现了一个简单的编程项目,也就是基于搜索的智能体解决虚拟环境中的运输任务问题。

在那门课程上我已经学到了很多知识,并决定继续学习相关的课题。在过去的几个星期里,我在旧金山参加了多次相关的技术讲座,涉及到深度学习、神经网络和数据结构,并且参加了一个有很多该领域的知名专家学者参加的机器学习会议。最重要的是,我在6月初参加了Udacity上的Intro to Machine Learning(机器学习入门)在线课程,前几天才完成。在这篇文章中,我想分享一下我从课程中学到的一些最常用的机器学习算法。

机器学习算法可以分为三大类:监督学习、无监督学习和强化学习。监督学习可用于一个特定的数据集(训练集)具有某一属性(标签),但是其他数据没有标签或者需要预测标签的情况。无监督学习可用于给定的没有标签的数据集(数据不是预分配好的),目的就是要找出数据间的潜在关系。强化学习位于这两者之间,每次预测都有一定形式的反馈,但是没有精确的标签或者错误信息。因为这是一个介绍课程,我没有学习过强化学习的相关内容,但是我希望以下10个关于监督学习和无监督学习的算法足以让你感兴趣。

监督学习

1.决策树(Decision Trees)

决策树是一个决策支持工具,它使用树形图或者决策模型以及可能性序列,包括偶然事件的结果、资源成本和效用。下图是其基本原理:

从业务决策的角度来看,决策树是人们必须了解的最少的是/否问题,这样才能评估大多数时候做出正确决策的概率。作为一种方法,它允许你以结构化和系统化的方式来解决问题,从而得出合乎逻辑的结论。

2.朴素贝叶斯分类(Naive Bayesian classification)

朴素贝叶斯分类器是一类简单的概率分类器,它基于贝叶斯定理和特征间的强大的(朴素的)独立假设。图中是贝叶斯公式,其中P(A|B)是后验概率,P(B|A)是似然,P(A)是类先验概率,P(B)是预测先验概率。

一些应用例子:

  • 判断垃圾邮件
  • 对新闻的类别进行分类,比如科技、政治、运动
  • 判断文本表达的感情是积极的还是消极的
  • 人脸识别

3.最小二乘法(Ordinary Least Squares Regression)

如果你懂统计学的话,你可能以前听说过线性回归。最小二乘法是一种计算线性回归的方法。你可以将线性回归看做通过一组点来拟合一条直线。实现这个有很多种方法,“最小二乘法”就像这样:你可以画一条直线,然后对于每一个数据点,计算每个点到直线的垂直距离,然后把它们加起来,那么最后得到的拟合直线就是距离和尽可能小的直线。

线性指的是你用来拟合数据的模型,而最小二乘法指的是你最小化的误差度量。

4.逻辑回归(Logistic Regression)

逻辑回归是一个强大的统计学方法,它可以用一个或多个解释变量来表示一个二项式结果。它通过使用逻辑函数来估计概率,从而衡量类别依赖变量和一个或多个独立变量之间的关系,后者服从累计逻辑分布。

总的来说,逻辑回归可以用于以下几个真实应用场景:

  • 信用评分
  • 计算营销活动的成功率
  • 预测某个产品的收入
  • 特定的某一天是否会发生地震

5.支持向量机(Support Vector Machine,SVM)

SVM是二进制分类算法。给定N维坐标下两种类型的点,SVM生成(N-1)维的超平面来将这些点分成两组。假设你在平面上有两种类型的可以线性分离的点,SVM将找到一条直线,将这些点分成两种类型,并且这条直线尽可能远离所有这些点。

从规模上看,使用SVM(经过适当的修改)解决的一些最大的问题包括显示广告、人类剪切位点识别(human splice site recognition)、基于图像的性别检测,大规模图像分类……

6.集成方法(Ensemble methods)

集成方法是学习算法,它通过构建一组分类器,然后通过它们的预测结果进行加权投票来对新的数据点进行分类。原始的集成方法是贝叶斯平均,但是最近的算法包括纠错输出编码、Bagging和Boosting。

那么集成方法如何工作?并且为什么它们要优于单个模型?

  • 它们平均了单个模型的偏差:如果你将民主党的民意调查和共和党的民意调查在一起平均化,那么你将得到一个均衡的结果,不偏向任何一方。
  • 它们减少了方差:一组模型的总体意见比其中任何一个模型的单一意见更加统一。在金融领域,这就是所谓的多元化,有许多股票的组合比一个单独的股票的不确定性更少,这也为什么你的模型在数据多的情况下会更好的原因。
  • 它们不太可能过拟合:如果你有单个的模型没有过拟合,那么把这些模型的预测简单结合起来(平均、加权平均、逻辑回归),那么最后得到的模型也不会过拟合。

无监督学习

7.聚类算法(Clustering Algorithms)

聚类是将一系列对象分组的任务,目标是使相同组(集群)中的对象之间比其他组的对象更相似。

每一种聚类算法都不相同,下面是一些例子:

  • 基于质心的算法
  • 基于连接的算法
  • 基于密度的算法
  • 概率
  • 降维
  • 神经网络/深度学习

8.主成分分析(Principal Component Analysis,PCA)

PCA是一个统计学过程,它通过使用正交变换将一组可能存在相关性的变量的观测值转换为一组线性不相关的变量的值,转换后的变量就是所谓的主分量。

PCA的一些应用包括压缩、简化数据便于学习、可视化等。请注意,领域知识在选择是否继续使用PCA时非常重要。 数据嘈杂的情况(PCA的所有成分具有很高的方差)并不适用。

9.奇异值分解(Singular Value Decomposition,SVD)

在线性代数中,SVD是复杂矩阵的因式分解。对于给定的m * n矩阵M,存在分解使得M=UΣV,其中U和V是酉矩阵,Σ是对角矩阵。

实际上,PCA是SVD的一个简单应用。在计算机视觉中,第一个人脸识别算法使用PCA和SVD来将面部表示为“特征面”的线性组合,进行降维,然后通过简单的方法将面部匹配到身份,虽然现代方法更复杂,但很多方面仍然依赖于类似的技术。

10.独立成分分析(Independent Component Analysis,ICA)

ICA是一种统计技术,主要用于揭示随机变量、测量值或信号集中的隐藏因素。ICA对观测到的多变量数据定义了一个生成模型,这通常是作为样本的一个大的数据库。在模型中,假设数据变量由一些未知的潜在变量线性混合,混合方式也是未知的。潜在变量被假定为非高斯分布并且相互独立,它们被称为观测数据的独立分量。

ICA与PCA有关,但是当这些经典方法完全失效时,它是一种更强大的技术,能够找出源的潜在因素。 其应用包括数字图像、文档数据库、经济指标和心理测量。

现在运用你对这些算法的理解去创造机器学习应用,为世界各地的人们带来更好的体验吧。

查看英文原文:The 10 Algorithms Machine Learning Engineers Need to Know

from:http://www.infoq.com/cn/articles/10-algorithms-machine-learning-engineers-need-to-know

机器学习算法 Python&R 速查表

原文出处: Cheatsheet – Python & R codes for common Machine Learning Algorithms
在拿破仑•希尔的名著《思考与致富》中讲述了达比的故事:达比经过几年的时间快要挖掘到了金矿,却在离它三英尺的地方离开了!

现在,我不知道这个故事是否真实。但是,我肯定在我的周围有一些跟达比一样的人,这些人认为,不管遇到什么问题, 机器学习的目的就是执行以及使用2 – 3组算法。他们不去尝试更好的算法和技术,因为他们觉得太困难或耗费时间。

像达比一样,他们无疑是在到达最后一步的时候突然消失了!最后,他们放弃机器学习,说计算量非常大、非常困难或者认为自己的模型已经到达优化的临界点——真的是这样吗?

下面这些速查表能让这些“达比”成为机器学习的支持者。这是10个最常用的机器学习算法,这些算法使用了Python和R代码。考虑到机器学习在构建模型中的应用,这些速查表可以很好作为编码指南帮助你学好这些机器学习算法。Good Luck!

PDF版本1

from:http://colobu.com/2015/11/05/full-cheatsheet-machine-learning-algorithms

python机器学习深度学习总结

1、Python环境搭建(Windows)

开发工具:PyCharm Community Edition(free)

Python环境:WinPython 3.5.2.3Qt5
–此环境集成了机器学习和深度学习用到的主要包:
numpy,scipy,matplotlib,pandas,scikit-learn,theano,keras

IPython notebook :

2、示例代码:

scikit-learn sample

keras sample

3、数据集Datasets

GeoHey公共数据

4、kaggle平台

Kaggle是一个数据建模数据分析竞赛平台。企业和研究者可在其上发布数据,统计学者和数据挖掘专家可在其上进行竞赛以产生最好的模型。这一众包模式依赖于这一事实,即有众多策略可以用于解决几乎所有预测建模的问题,而研究者不可能在一开始就了解什么方法对于特定问题是最为有效的。Kaggle的目标则是试图通过众包的形式来解决这一难题,进而使数据科学成为一场运动。(wiki)

5、常见问题处理

Approaching (Almost) Any Machine Learning Problem

 

Open dataset

Open dataset:
■ 1.http://archive.ics.uci.edu/ml/
—The best-known source of datasets for
machine learning is the University of California at Irvine. We used fewer
than 10 data sets in this book, but there are more than 200 datasets in this repository.
Many of these datasets are used to compare the performance of algorithms
so that researchers can have an objective comparison of performance.
■ 2.http://aws.amazon.com/publicdatasets/
—If you’re a big data cowboy, then
this is the link for you. Amazon has some really big datasets, including the
U.S. census data, the annotated human genome data, a 150 GB log of Wikipedia’s
page traffic, and a 500 GB database of Wikipedia’s link data.
■ 3.http://www.data.gov
—Data.gov is a website launched in 2009 to increase the
public’s access to government datasets. The site was intended to make all
government data public as long as the data was not private or restricted for
security reasons. In 2010, the site had over 250,000 datasets. It’s uncertain
how long the site will remain active. In 2011, the federal government
reduced funding for the Electronic Government Fund, which pays for
Data.gov. The datasets range from products recalled to a list of failed banks.
■4. http://www.data.gov/opendatasites
—Data.gov has a list of U.S. states, cities,
and countries that hold similar open data sites.
■5. http://www.infochimps.com/
—Infochimps is a company that aims to give
everyone access to every dataset in the world. Currently, they have more
than 14,000 datasets available to download. Unlike other listed sites, some
of the datasets on Infochimps are for sale. You can sell your own datasets
here as well.

refer:《Machine Learning in Action.pdf》

Python 网页爬虫 & 文本处理 & 科学计算 & 机器学习 & 数据挖掘兵器谱

曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开发语言是C/C++,但平时的很多文本数据处理任务都交给了Python。离开腾讯创业后,第一个作品课程图谱也 是选择了Python系的Flask框架,渐渐的将自己的绝大部分工作交给了Python。这些年来,接触和使用了很多Python工具包,特别是在文本 处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的。其实如果仔细留意微 博,你会发现很多这方面的分享,自己也Google了一下,发现也有同学总结了“Python机器学习库”, 不过总感觉缺少点什么。最近流行一个词,全栈工程师(full stack engineer),作为一个苦逼的创业者,天然的要把自己打造成一个full stack engineer,而这个过程中,这些Python工具包给自己提供了足够的火力,所以想起了这个系列。当然,这也仅仅是抛砖引玉,希望大家能提供更多的 线索,来汇总整理一套Python网页爬虫,文本处理,科学计算,机器学习和数据挖掘的兵器谱。

一、Python网页爬虫工具集

一个真实的项目,一定是从获取数据开始的。无论文本处理,机器学习和数据挖掘,都需要数据,除了通过一些渠道购买或者下载的专业数据外,常常需要大 家自己动手爬数据,这个时候,爬虫就显得格外重要了,幸好,Python提供了一批很不错的网页爬虫工具框架,既能爬取数据,也能获取和清洗数据,我们也 就从这里开始了:

1. Scrapy

Scrapy, a fast high-level screen scraping and web crawling framework for Python.

鼎鼎大名的Scrapy,相信不少同学都有耳闻,课程图谱中的很多课程都是依靠Scrapy抓去的,这方面的介绍文章有很多,推荐大牛pluskid早年的一篇文章:《Scrapy 轻松定制网络爬虫》,历久弥新。

官方主页:http://scrapy.org/
Github代码页: https://github.com/scrapy/scrapy

2. Beautiful Soup

You didn’t write that awful page. You’re just trying to get some data out of it. Beautiful Soup is here to help. Since 2004, it’s been saving programmers hours or days of work on quick-turnaround screen scraping projects.

读书的时候通过《集体智慧编程》这本书知道Beautiful Soup的,后来也偶尔会用用,非常棒的一套工具。客观的说,Beautifu Soup不完全是一套爬虫工具,需要配合urllib使用,而是一套HTML/XML数据分析,清洗和获取工具。

官方主页:http://www.crummy.com/software/BeautifulSoup/

3. Python-Goose

Html Content / Article Extractor, web scrapping lib in Python

Goose最早是用Java写得,后来用Scala重写,是一个Scala项目。Python-Goose用Python重写,依赖了Beautiful Soup。前段时间用过,感觉很不错,给定一个文章的URL, 获取文章的标题和内容很方便。

Github主页:https://github.com/grangier/python-goose

二、Python文本处理工具集

从网页上获取文本数据之后,依据任务的不同,就需要进行基本的文本处理了,譬如对于英文来说,需要基本的tokenize,对于中文,则需要常见的 中文分词,进一步的话,无论英文中文,还可以词性标注,句法分析,关键词提取,文本分类,情感分析等等。这个方面,特别是面向英文领域,有很多优秀的工具 包,我们一一道来。

1. NLTK — Natural Language Toolkit

NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, and an active discussion forum.

搞自然语言处理的同学应该没有人不知道NLTK吧,这里也就不多说了。不过推荐两本书籍给刚刚接触NLTK或者需要详细了解NLTK的同学: 一个是官方的《Natural Language Processing with Python》,以介绍NLTK里的功能用法为主,同时附带一些Python知识,同时国内陈涛同学友情翻译了一个中文版,这里可以看到:推荐《用Python进行自然语言处理》中文翻译-NLTK配套书;另外一本是《Python Text Processing with NLTK 2.0 Cookbook》,这本书要深入一些,会涉及到NLTK的代码结构,同时会介绍如何定制自己的语料和模型等,相当不错。

官方主页:http://www.nltk.org/
Github代码页:https://github.com/nltk/nltk

2. Pattern

Pattern is a web mining module for the Python programming language.

It has tools for data mining (Google, Twitter and Wikipedia API, a web crawler, a HTML DOM parser), natural language processing (part-of-speech taggers, n-gram search, sentiment analysis, WordNet), machine learning (vector space model, clustering, SVM), network analysis and canvas visualization.

Pattern由比利时安特卫普大学CLiPS实验室出品,客观的说,Pattern不仅仅是一套文本处理工具,它更是一套web数据挖掘工具,囊 括了数据抓取模块(包括Google, Twitter, 维基百科的API,以及爬虫和HTML分析器),文本处理模块(词性标注,情感分析等),机器学习模块(VSM, 聚类,SVM)以及可视化模块等,可以说,Pattern的这一整套逻辑也是这篇文章的组织逻辑,不过这里我们暂且把Pattern放到文本处理部分。我 个人主要使用的是它的英文处理模块Pattern.en, 有很多很不错的文本处理功能,包括基础的tokenize, 词性标注,句子切分,语法检查,拼写纠错,情感分析,句法分析等,相当不错。

官方主页:http://www.clips.ua.ac.be/pattern

3. TextBlob: Simplified Text Processing

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.

TextBlob是一个很有意思的Python文本处理工具包,它其实是基于上面两个Python工具包NLKT和Pattern做了封装 (TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both),同时提供了很多文本处理功能的接口,包括词性标注,名词短语提取,情感分析,文本分类,拼写检查等,甚至包括翻译和语言检测,不过这个是基于 Google的API的,有调用次数限制。TextBlob相对比较年轻,有兴趣的同学可以关注。

官方主页:http://textblob.readthedocs.org/en/dev/
Github代码页:https://github.com/sloria/textblob

4. MBSP for Python

MBSP is a text analysis system based on the TiMBL and MBT memory based learning applications developed at CLiPS and ILK. It provides tools for Tokenization and Sentence Splitting, Part of Speech Tagging, Chunking, Lemmatization, Relation Finding and Prepositional Phrase Attachment.

MBSP与Pattern同源,同出自比利时安特卫普大学CLiPS实验室,提供了Word Tokenization, 句子切分,词性标注,Chunking, Lemmatization,句法分析等基本的文本处理功能,感兴趣的同学可以关注。

官方主页:http://www.clips.ua.ac.be/pages/MBSP

5. Gensim: Topic modeling for humans

Gensim是一个相当专业的主题模型Python工具包,无论是代码还是文档,我们曾经用《如何计算两个文档的相似度》介绍过Gensim的安装和使用过程,这里就不多说了。

官方主页:http://radimrehurek.com/gensim/index.html
github代码页:https://github.com/piskvorky/gensim

6. langid.py: Stand-alone language identification system

语言检测是一个很有意思的话题,不过相对比较成熟,这方面的解决方案很多,也有很多不错的开源工具包,不过对于Python来说,我使用过 langid这个工具包,也非常愿意推荐它。langid目前支持97种语言的检测,提供了很多易用的功能,包括可以启动一个建议的server,通过 json调用其API,可定制训练自己的语言检测模型等,可以说是“麻雀虽小,五脏俱全”。

Github主页:https://github.com/saffsd/langid.py

7. Jieba: 结巴中文分词

“结巴”中文分词:做最好的Python中文分词组件 “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module.

好了,终于可以说一个国内的Python文本处理工具包了:结巴分词,其功能包括支持三种分词模式(精确模式、全模式、搜索引擎模式),支持繁体分词,支持自定义词典等,是目前一个非常不错的Python中文分词解决方案。

Github主页:https://github.com/fxsjy/jieba

8. xTAS

xtas, the eXtensible Text Analysis Suite, a distributed text analysis package based on Celery and Elasticsearch.

感谢微博朋友 @大山坡的春 提供的线索:我们组同事之前发布了xTAS,也是基于python的text mining工具包,欢迎使用,链接:http://t.cn/RPbEZOW。看起来很不错的样子,回头试用一下。

Github代码页:https://github.com/NLeSC/xtas

三、Python科学计算工具包

说起科学计算,大家首先想起的是Matlab,集数值计算,可视化工具及交互于一身,不过可惜是一个商业产品。开源方面除了GNU Octave在 尝试做一个类似Matlab的工具包外,Python的这几个工具包集合到一起也可以替代Matlab的相应功 能:NumPy+SciPy+Matplotlib+iPython。同时,这几个工具包,特别是NumPy和SciPy,也是很多Python文本处理 & 机器学习 & 数据挖掘工具包的基础,非常重要。最后再推荐一个系列《用Python做科学计算》,将会涉及到NumPy, SciPy, Matplotlib,可以做参考。

1. NumPy

NumPy is the fundamental package for scientific computing with Python. It contains among other things:

1)a powerful N-dimensional array object

2)sophisticated (broadcasting) functions

3)tools for integrating C/C++ and Fortran code

4) useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

NumPy几乎是一个无法回避的科学计算工具包,最常用的也许是它的N维数组对象,其他还包括一些成熟的函数库,用于整合C/C++和 Fortran代码的工具包,线性代数、傅里叶变换和随机数生成函数等。NumPy提供了两种基本的对象:ndarray(N-dimensional array object)和 ufunc(universal function object)。ndarray是存储单一数据类型的多维数组,而ufunc则是能够对数组进行处理的函数。

官方主页:http://www.numpy.org/

2. SciPy:Scientific Computing Tools for Python

SciPy refers to several related but distinct entities:

1)The SciPy Stack, a collection of open source software for scientific computing in Python, and particularly a specified set of core packages.

2)The community of people who use and develop this stack.

3)Several conferences dedicated to scientific computing in Python – SciPy, EuroSciPy and SciPy.in.

4)The SciPy library, one component of the SciPy stack, providing many numerical routines.

“SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号 处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。其功能与软件MATLAB、Scilab和GNU Octave类似。 Numpy和Scipy常常结合着使用,Python大多数机器学习库都依赖于这两个模块。”—-引用自“Python机器学习库

官方主页:http://www.scipy.org/

3. Matplotlib

matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. matplotlib can be used in python scripts, the python and ipython shell (ala MATLAB®* or Mathematica®†), web application servers, and six graphical user interface toolkits.

matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入 GUI应用程序中。Matplotlib可以配合ipython shell使用,提供不亚于Matlab的绘图体验,总之用过了都说好。

官方主页:http://matplotlib.org/

4. iPython

IPython provides a rich architecture for interactive computing with:

1)Powerful interactive shells (terminal and Qt-based).

2)A browser-based notebook with support for code, text, mathematical expressions, inline plots and other rich media.

3)Support for interactive data visualization and use of GUI toolkits.

4)Flexible, embeddable interpreters to load into your own projects.

5)Easy to use, high performance tools for parallel computing.

“iPython 是一个Python 的交互式Shell,比默认的Python Shell 好用得多,功能也更强大。 她支持语法高亮、自动完成、代码调试、对象自省,支持 Bash Shell 命令,内置了许多很有用的功能和函式等,非常容易使用。 ” 启动iPython的时候用这个命令“ipython –pylab”,默认开启了matploblib的绘图交互,用起来很方便。

官方主页:http://ipython.org/

四、Python 机器学习 & 数据挖掘 工具包

机器学习和数据挖掘这两个概念不太好区分,这里就放到一起了。这方面的开源Python工具包有很多,这里先从熟悉的讲起,再补充其他来源的资料,也欢迎大家补充。

1. scikit-learn: Machine Learning in Python

scikit-learn (formerly scikits.learn) is an open source machine learning library for the Python programming language. It features various classification, regression and clustering algorithms including support vector machines, logistic regression, naive Bayes, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.

首先推荐大名鼎鼎的scikit-learn,scikit-learn是一个基于NumPy, SciPy, Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM, 逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都非常不错,在许多Python项目中都有应用。例如在我们熟悉的NLTK中,分类器 方面就有专门针对scikit-learn的接口,可以调用scikit-learn的分类算法以及训练数据来训练分类器模型。这里推荐一个视频,也是我 早期遇到scikit-learn的时候推荐过的:推荐一个Python机器学习工具包Scikit-learn以及相关视频–Tutorial: scikit-learn – Machine Learning in Python

官方主页:http://scikit-learn.org/

2. Pandas: Python Data Analysis Library

Pandas is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series.

第一次接触Pandas是由于Udacity上的一门数据分析课程“Introduction to Data Science” 的Project需要用Pandas库,所以学习了一下Pandas。Pandas也是基于NumPy和Matplotlib开发的,主要用于数据分析和 数据可视化,它的数据结构DataFrame和R语言里的data.frame很像,特别是对于时间序列数据有自己的一套分析机制,非常不错。这里推荐一 本书《Python for Data Analysis》,作者是Pandas的主力开发,依次介绍了iPython, NumPy, Pandas里的相关功能,数据可视化,数据清洗和加工,时间数据处理等,案例包括金融股票数据挖掘等,相当不错。

官方主页:http://pandas.pydata.org/

=====================================================================
分割线,以上工具包基本上都是自己用过的,以下来源于其他同学的线索,特别是《Python机器学习库》,《23个python的机器学习包》,做了一点增删修改,欢迎大家补充
=====================================================================

3. mlpy – Machine Learning Python

mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and the GNU Scientific Libraries.

mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is Open Source, distributed under the GNU General Public License version 3.

官方主页:http://mlpy.sourceforge.net/

4. MDP:The Modular toolkit for Data Processing

Modular toolkit for Data Processing (MDP) is a Python data processing framework.
From the user’s perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures.
From the scientific developer’s perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library.
The base of available algorithms is steadily increasing and includes signal processing methods (Principal Component Analysis, Independent Component Analysis, Slow Feature Analysis), manifold learning methods ([Hessian] Locally Linear Embedding), several classifiers, probabilistic methods (Factor Analysis, RBM), data pre-processing methods, and many others.

“MDP用于数据处理的模块化工具包,一个Python数据处理框架。 从用户的观点,MDP是能够被整合到数据处理序列和更复杂的前馈网络结构的一批监督学习和非监督学习算法和其他数据处理单元。计算依照速度和内存需求而高 效的执行。从科学开发者的观点,MDP是一个模块框架,它能够被容易地扩展。新算法的实现是容易且直观的。新实现的单元然后被自动地与程序库的其余部件进 行整合。MDP在神经科学的理论研究背景下被编写,但是它已经被设计为在使用可训练数据处理算法的任何情况中都是有用的。其站在用户一边的简单性,各种不 同的随时可用的算法,及应用单元的可重用性,使得它也是一个有用的教学工具。”

官方主页:http://mdp-toolkit.sourceforge.net/

5. PyBrain

PyBrain is a modular Machine Learning Library for Python. Its goal is to offer flexible, easy-to-use yet still powerful algorithms for Machine Learning Tasks and a variety of predefined environments to test and compare your algorithms.

PyBrain is short for Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network Library. In fact, we came up with the name first and later reverse-engineered this quite descriptive “Backronym”.

“PyBrain(Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network)是Python的一个机器学习模块,它的目标是为机器学习任务提供灵活、易应、强大的机器学习算法。(这名字很霸气)

PyBrain正如其名,包括神经网络、强化学习(及二者结合)、无监督学习、进化算法。因为目前的许多问题需要处理连续态和行为空间,必须使用函数逼近(如神经网络)以应对高维数据。PyBrain以神经网络为核心,所有的训练方法都以神经网络为一个实例。”

官方主页:http://www.pybrain.org/

6. PyML – machine learning in Python

PyML is an interactive object oriented framework for machine learning written in Python. PyML focuses on SVMs and other kernel methods. It is supported on Linux and Mac OS X.

“PyML是一个Python机器学习工具包,为各分类和回归方法提供灵活的架构。它主要提供特征选择、模型选择、组合分类器、分类评估等功能。”

项目主页:http://pyml.sourceforge.net/

7. Milk:Machine learning toolkit in Python.

Its focus is on supervised classification with several classifiers available:
SVMs (based on libsvm), k-NN, random forests, decision trees. It also performs
feature selection. These classifiers can be combined in many ways to form
different classification systems.

“Milk是Python的一个机器学习工具箱,其重点是提供监督分类法与几种有效的分类分析:SVMs(基于libsvm),K-NN,随机森林 经济和决策树。它还可以进行特征选择。这些分类可以在许多方面相结合,形成不同的分类系统。对于无监督学习,它提供K-means和affinity propagation聚类算法。”

官方主页:http://luispedro.org/software/milk

http://luispedro.org/software/milk

8. PyMVPA: MultiVariate Pattern Analysis (MVPA) in Python

PyMVPA is a Python package intended to ease statistical learning analyses of large datasets. It offers an extensible framework with a high-level interface to a broad range of algorithms for classification, regression, feature selection, data import and export. It is designed to integrate well with related software packages, such as scikit-learn, and MDP. While it is not limited to the neuroimaging domain, it is eminently suited for such datasets. PyMVPA is free software and requires nothing but free-software to run.

“PyMVPA(Multivariate Pattern Analysis in Python)是为大数据集提供统计学习分析的Python工具包,它提供了一个灵活可扩展的框架。它提供的功能有分类、回归、特征选择、数据导入导出、可视化等”

官方主页:http://www.pymvpa.org/

9. Pyrallel – Parallel Data Analytics in Python

Experimental project to investigate distributed computation patterns for machine learning and other semi-interactive data analytics tasks.

“Pyrallel(Parallel Data Analytics in Python)基于分布式计算模式的机器学习和半交互式的试验项目,可在小型集群上运行”

Github代码页:http://github.com/pydata/pyrallel

10. Monte – gradient based learning in Python

Monte (python) is a Python framework for building gradient based learning machines, like neural networks, conditional random fields, logistic regression, etc. Monte contains modules (that hold parameters, a cost-function and a gradient-function) and trainers (that can adapt a module’s parameters by minimizing its cost-function on training data).

Modules are usually composed of other modules, which can in turn contain other modules, etc. Gradients of decomposable systems like these can be computed with back-propagation.

“Monte (machine learning in pure Python)是一个纯Python机器学习库。它可以迅速构建神经网络、条件随机场、逻辑回归等模型,使用inline-C优化,极易使用和扩展。”

官方主页:http://montepython.sourceforge.net

11. Theano

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Theano features:

1)tight integration with NumPy – Use numpy.ndarray in Theano-compiled functions.

2)transparent use of a GPU – Perform data-intensive calculations up to 140x faster than with CPU.(float32 only)

3)efficient symbolic differentiation – Theano does your derivatives for function with one or many inputs.

4)speed and stability optimizations – Get the right answer for log(1+x) even when x is really tiny.

5)dynamic C code generation – Evaluate expressions faster.

6) extensive unit-testing and self-verification – Detect and diagnose many types of mistake.

Theano has been powering large-scale computationally intensive scientific investigations since 2007. But it is also approachable enough to be used in the classroom (IFT6266 at the University of Montreal).

“Theano 是一个 Python 库,用来定义、优化和模拟数学表达式计算,用于高效的解决多维数组的计算问题。Theano的特点:紧密集成Numpy;高效的数据密集型GPU计算;高 效的符号微分运算;高速和稳定的优化;动态生成c代码;广泛的单元测试和自我验证。自2007年以来,Theano已被广泛应用于科学运算。theano 使得构建深度学习模型更加容易,可以快速实现多种模型。PS:Theano,一位希腊美女,Croton最有权势的Milo的女儿,后来成为了毕达哥拉斯 的老婆。”

12. Pylearn2

Pylearn2 is a machine learning library. Most of its functionality is built on top of Theano. This means you can write Pylearn2 plugins (new models, algorithms, etc) using mathematical expressions, and theano will optimize and stabilize those expressions for you, and compile them to a backend of your choice (CPU or GPU).

“Pylearn2建立在theano上,部分依赖scikit-learn上,目前Pylearn2正处于开发中,将可以处理向量、图像、视频等数据,提供MLP、RBM、SDA等深度学习模型。”

官方主页:http://deeplearning.net/software/pylearn2/

from:http://python.jobbole.com/81153/