Tag Archives: DeepLearning

Android+TensorFlow+CNN+MNIST 手写数字识别实现

Catalogue

  1. 1. Overview
  2. 2. Practice
    1. 2.1. Environment
    2. 2.2. Train & Evaluate(Python+TensorFlow)
    3. 2.3. Test(Android+TensorFlow)
  3. 3. Theory
    1. 3.1. MNIST
    2. 3.2. CNN(Convolutional Neural Network)
      1. 3.2.1. CNN Keys
      2. 3.2.2. CNN Architecture
    3. 3.3. Regression + Softmax
      1. 3.3.1. Linear Regression
      2. 3.3.2. Softmax Regression
  4. 4. References & Recommends

Overview

本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别。
Code~


Practice

Environment

  • TensorFlow: 1.2.0
  • Python: 3.6
  • Python IDE: PyCharm 2017.2
  • Android IDE: Android Studio 3.0

Train & Evaluate(Python+TensorFlow)

训练和评估部分主要目的是生成用于测试用的pb文件,其保存了利用TensorFlow python API构建训练后的网络拓扑结构和参数信息,实现方式有很多种,除了cnn外还可以使用rnn,fcnn等。
其中基于cnn的函数也有两套,分别为tf.layers.conv2d和tf.nn.conv2d, tf.layers.conv2d使用tf.nn.conv2d作为后端处理,参数上filters是整数,filter是4维张量。原型如下:
convolutional.py文件
def conv2d(inputs, filters, kernel_size, strides=(1, 1), padding=’valid’, data_format=’channels_last’,
dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None,
bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None,
activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None,
reuse=None)

gen_nn_ops.py 文件

def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", name=None)

官方Demo实例中使用的是layers module,结构如下:

  • Convolutional Layer #1:32个5×5的filter,使用ReLU激活函数
  • Pooling Layer #1:2×2的filter做max pooling,步长为2
  • Convolutional Layer #2:64个5×5的filter,使用ReLU激活函数
  • Pooling Layer #2:2×2的filter做max pooling,步长为2
  • Dense Layer #1:1024个神经元,使用ReLU激活函数,dropout率0.4 (为了避免过拟合,在训练的时候,40%的神经元会被随机去掉)
  • Dense Layer #2 (Logits Layer):10个神经元,每个神经元对应一个类别(0-9)

核心代码在cnn_model_fn(features, labels, mode)函数中,完成卷积结构的完整定义,核心代码如下.

也可以采用传统的tf.nn.conv2d函数, 核心代码如下。

Test(Android+TensorFlow)

  • 核心是使用API接口: TensorFlowInferenceInterface.java
  • 配置gradle 或者 自编译TensorFlow源码导入jar和so
    compile ‘org.tensorflow:tensorflow-android:1.2.0’
  • 导入pb文件.pb文件放assets目录,然后读取

    String actualFilename = labelFilename.split(“file:///android_asset/“)[1];
    Log.i(TAG, “Reading labels from: “ + actualFilename);
    BufferedReader br = null;
    br = new BufferedReader(new InputStreamReader(assetManager.open(actualFilename)));
    String line;
    while ((line = br.readLine()) != null) {
    c.labels.add(line);
    }
    br.close();

  • TensorFlow接口使用
  • 最终效果:

Theory

MNIST

MNIST,最经典的机器学习模型之一,包含0~9的数字,28*28大小的单色灰度手写数字图片数据库,其中共60,000 training examples和10,000 test examples。
文件目录如下,主要包括4个二进制文件,分别为训练和测试图片及Label。

如下为训练图片的二进制结构,在真实数据前(pixel),有部分描述字段(魔数,图片个数,图片行数和列数),真实数据的存储采用大端规则。
(大端规则,就是数据的高字节保存在低内存地址中,低字节保存在高内存地址中)

在具体实验使用,需要提取真实数据,可采用专门用于处理字节的库struct中的unpack_from方法,核心方法如下:
struct.unpack_from(self._fourBytes2, buf, index)

MNIST作为AI的Hello World入门实例数据,TensorFlow封装对其封装好了函数,可直接使用
mnist = input_data.read_data_sets(‘MNIST’, one_hot=True)

CNN(Convolutional Neural Network)

CNN Keys

  • CNN,Convolutional Neural Network,中文全称卷积神经网络,即所谓的卷积网(ConvNets)。
  • 卷积(Convolution)可谓是现代深度学习中最最重要的概念了,它是一种数学运算,读者可以从下面链接[23]中卷积相关数学机理,包括分别从傅里叶变换和狄拉克δ函数中推到卷积定义,我们可以从字面上宏观粗鲁的理解成将因子翻转相乘卷起来。
  • 卷积动画。演示如下图[26],更多动画演示可参考[27]
  • 神经网络。一个由大量神经元(neurons)组成的系统,如下图所示[21]

    其中x表示输入向量,w为权重,b为偏值bias,f为激活函数。
  • Activation Function 激活函数: 常用的非线性激活函数有Sigmoid、tanh、ReLU等等,公式如下如所示。
    • Sigmoid缺点
      • 函数饱和使梯度消失(神经元在值为 0 或 1 的时候接近饱和,这些区域,梯度几乎为 0)
      • sigmoid 函数不是关于原点中心对称的(无0中心化)
    • tanh: 存在饱和问题,但它的输出是零中心的,因此实际中 tanh 比 sigmoid 更受欢迎。
    • ReLU
      • 优点1:ReLU 对于 SGD 的收敛有巨大的加速作用
      • 优点2:只需要一个阈值就可以得到激活值,而不用去算一大堆复杂的(指数)运算
      • 缺点:需要合理设置学习率(learning rate),防止训练时dead,还可以使用Leaky ReLU/PReLU/Maxout等代替
  • Pooling池化。一般分为平均池化mean pooling和最大池化max pooling,如下图所示[21]为max pooling,除此之外,还有重叠池化(OverlappingPooling)[24],空金字塔池化(Spatial Pyramid Pooling)[25]
    • 平均池化:计算图像区域的平均值作为该区域池化后的值。
    • 最大池化:选图像区域的最大值作为该区域池化后的值。

CNN Architecture

  • 三层神经网络。分别为输入层(Input layer),输出层(Output layer),隐藏层(Hidden layer),如下图所示[21]
  • CNN层级结构。 斯坦福cs231n中阐述了一种[INPUT-CONV-RELU-POOL-FC],如下图所示[21],分别为输入层,卷积层,激励层,池化层,全连接层。
  • CNN通用架构分为如下三层结构:
    • Convolutional layers 卷积层
    • Pooling layers 汇聚层
    • Dense (fully connected) layers 全连接层
  • 动画演示。参考[22]。

Regression + Softmax

机器学习有监督学习(supervised learning)中两大算法分别是分类算法和回归算法,分类算法用于离散型分布预测,回归算法用于连续型分布预测。
回归的目的就是建立一个回归方程用来预测目标值,回归的求解就是求这个回归方程的回归系数。
其中回归(Regression)算法包括Linear Regression,Logistic Regression等, Softmax Regression是其中一种用于解决多分类(multi-class classification)问题的Logistic回归算法的推广,经典实例就是在MNIST手写数字分类上的应用。

Linear Regression

Linear Regression是机器学习中最基础的模型,其目标是用预测结果尽可能地拟合目标label

  • 多元线性回归模型定义
  • 多元线性回归求解
  • Mean Square Error (MSE)
    • Gradient Descent(梯度下降法)
    • Normal Equation(普通最小二乘法)
    • 局部加权线性回归(LocallyWeightedLinearRegression, LWLR ):针对线性回归中模型欠拟合现象,在估计中引入一些偏差以便降低预测的均方误差。
    • 岭回归(ridge regression)和缩减方法
  • 选择: Normal Equation相比Gradient Descent,计算量大(需计算X的转置与逆矩阵),只适用于特征个数小于100000时使用;当特征数量大于100000时使用梯度法。当X不可逆时可替代方法为岭回归算法。LWLR方法增加了计算量,因为它对每个点做预测时都必须使用整个数据集,而不是计算出回归系数得到回归方程后代入计算即可,一般不选择。
  • 调优: 平衡预测偏差和模型方差(高偏差就是欠拟合,高方差就是过拟合)
    • 获取更多的训练样本 – 解决高方差
    • 尝试使用更少的特征的集合 – 解决高方差
    • 尝试获得其他特征 – 解决高偏差
    • 尝试添加多项组合特征 – 解决高偏差
    • 尝试减小 λ – 解决高偏差
    • 尝试增加 λ -解决高方差

Softmax Regression

  • Softmax Regression估值函数(hypothesis)
  • Softmax Regression代价函数(cost function)
  • 理解:
  • Softmax Regression & Logistic Regression:
    • 多分类 & 二分类。Logistic Regression为K=2时的Softmax Regression
    • 针对K类问题,当类别之间互斥时可采用Softmax Regression,当非斥时,可采用K个独立的Logistic Regression
  • 总结: Softmax Regression适用于类别数量大于2的分类,本例中用于判断每张图属于每个数字的概率。

References & Recommends

MNIST

Softmax

CNN

TensorFlow+CNN / TensorFlow+Android



By SkySeraph-2018

SkySeraph cnBlogs
SkySeraph CSDN

本文首发于skyseraph.com“Android+TensorFlow+CNN+MNIST 手写数字识别实现”

谷歌大神Jeff Dean:大规模深度学习最新进展

在AlphaGo与李世石比赛期间,谷歌天才工程师Jeff Dean在Google Campus汉城校区做了一次关于智能计算机系统的大规模深度学习(Large-Scale Deep Learning for Intelligent Computer Systems)的演讲。本文是对他这次演讲的总结。完整演讲视频(如下):

如果你无法理解信息里包含的内容,那么就会很难将其组织起来。

自从AlphaGo与李世石的比赛——这是约翰·亨利对战蒸汽锤的现代版本——吸引了全世界,再次滋生了对「人工智能毁灭世界」的恐惧感,似乎此时一睹Jeff的演讲是绝佳时刻。如果你认为AlphaGo现在很好,就等待它的beta版本吧。

Jeff当然提到了谷歌的著名语录:组织这个世界的信息,使信息唾手可得并变得有用。

过去,我们可能会将「组织」和收集、清除、存储、索引、报告和搜索数据联系起来。所有这些都是谷歌早期精通的业务。而这些任务完成后,谷歌已经开始进行下一项挑战了。

现在,组织意味着理解。

此次演讲的一些重点:

真正的神经网络由几亿个参数组成。谷歌现在所拥有的技能在于如何建造并快速训练这些大型模型来处理大量数据集,并用它们去解决实际问题,之后快速将这些模型部署到不同平台上的大量产品中(手机、传感器、云等等)。

神经网络在90年代没有得到快速发展是由于缺乏足够的计算能力和大型的数据集。你能看到谷歌对算法的天然热爱是如何与他们的大量基础设施结合到一起的,也能看到不断扩大的数据集如何为谷歌的人工智能创造了完美的推动。

谷歌和其他公司的一个关键区别就在于,当他们在2011年启动谷歌大脑计划时,他们并没有将他们的研究独立成该公司一个单独的研究部门,成为象牙塔一般的存在。而是项目团队和其他团队紧密合作,比如安卓、Gmail 和photo等部门,以确实改进它们的特性,解决困难的问题。这对每一家公司来说都是非常珍贵的一刻。通过和你的人一起工作将研究进行实际应用。

这一想法十分强大:他们知道他们能够获取完整的子系统,有些可能是机器学习到的,用更加通用的端对端的机器学习块进行替换。通常当你有很多复杂的子系统时,总会有很多复杂的代码将这些系统拼接起来。如果能够用数据和非常简单的算法将这一切进行替换的话就再好不过了。

机器学习很快将会变得更好。引用Jeff的话说:机器学习领域的发展非常快。一篇论文发布出来,一周内全球众多研究团体会下载这篇论文,阅读、解析论文,验证论文的内容,然后把自己对论文的延展发布到arXiv.org上。这与计算机学的其他领域不同,他们首先需要提交文件,而后六个月会议讨论决定是否接收,再过三个月会议上才会有结果。这就耗费了一年时间。电子论文能把这个时间压缩到一周是非常惊人的。

技术能够非常神奇的结合起来。谷歌翻译团队写了一个APP,能够使用计算机视觉在取景器上识别文本。在翻译完文本后,可以把翻译后的内容自动添加到图片上。另外一个例子是写图片字幕。把图片识别和一序列一序列的神经网络结合起来。可以想象,这些模块化的内容在未来将何等紧密的结合起来。

有强大功能的模型要小到足以在智能手机上运行。科技想要想取代智力必须走到这一步。它不能依靠网络连接外部的「云大脑」。既然TensorFlow模型能够在手机上运行,那这一点是有可能实现的。

如果你还没有思考深度神经网络如何解决数据理解问题,那你就要开始思考了。这条起始线从现在开始,但它的实现是非常明了的,我们看到了很多难题在深度学习网络面前都迎刃而解。

Jeff 发表的讲话都非常的棒,这次毫不例外。内容非常直接有趣,有深度,还非常容易理解。如果你想了解深度学习或了解Googel打算做什么,这些内容就值得一看了。

理解意味着什么?

当一个人看到街道景象时,他能轻而易举地挑选出图片上的文本,了解到有的商店卖纪念品,有家店价格特别低等信息。但直到现在,计算机依然不能从图片中提取出这些信息。

170007kiymh23gx8zg28i7.jpg

如果计算机想要从图片中了解现实世界,它需要能够从中挑选出有趣的信息点,阅读文本并理解它。

在未来,小型移动设备将主宰着计算机交互。这些设备都需要不同类型的界面。需要真的能够理解并生成对话。

我们在搜索引擎中输入:[汽车零部件]。旧的谷歌版本会因为关键词匹配给你第一条结果,但更好的结果其实是第二个结果。真正的理解是这个问题深层次的意义是什么,并非字眼的表面意义。这才是构建好的搜索与语言理解产品所需要的。

170008plfww7fk2woqw75o.jpg

谷歌深度神经网络小历史

谷歌大脑计划于2011年启动,聚焦于真正推动神经网络科学能达到的最先进的技术。

神经网络已经存在很多年了,出现于19世纪60年代至70年代之间,在80年代晚期和90年代早期红极一时,然后逐渐暗淡。主要因为两个问题:1)缺乏必备的计算能力去训练大量的模型,这意味着神经网络不能应用于包含大量有趣的数据集的大型问题。2)缺乏大量的有趣的数据集。

谷歌开始只有几个产品团队工作。随着这些团队发布一些很好的、能解决以前不能解决的问题的产品。名声渐起,很快,更多的团队加入其中帮助解决问题。

谷歌需要利用深度学习技术的产品/领域:安卓,Apps,药物发现,谷歌邮箱,图像理解,地图,自然语言,图片,机器人,语音翻译,等等。

深度学习能应用于如此完全不同的项目的原因是他们涉及相同的基石,这些基石可用于不同的领域:语音、文本、搜索查询、图像、视频、标签、实体(一种特定的软件模块)、文字、音频特性。你可以输入一种类型的信息,决定你想要输出信息类型,收集训练数据集指示出你想要计算的功能。然后,你可以放手不管了。

这些模型十分奏效,因为你输入的是非常原始的数据。你不必给出数据大量的有趣特点,模型的力量足以让它自动地通过观察许多许多例子决定数据集的有趣之处。

你可以学习常见的表征,这种学习很可能是跨领域的。例如,一辆『汽车』可以指图像中与真实相同的汽车。

他们已经学到他们可以聚集一大堆的子系统,其中一些可能是由机器学习的,然后用更通用的端对端的机器学习块代替它。通常当你有很多复杂的子系统时,往往有大量复杂的代码将这些子系统缝结在一起。如果你能用数据和简单的算法代替所有复杂代码,那就太好了。

什么是单个深度神经网络?

神经网络从数据中学习真正复杂的函数。从一端输入内容转换成另一端的输出内容。

这一函数不像计算x2,而是真正复杂的函数。当你输入原始像素,比如一只猫是,输出结果就会是事物的类别。

170050i80a2do1o3zy80yg.png

深度学习中的「深度」是指神经网络的层的数量。

对于深度,一个好的属性是系统是由简单的可训练的数学函数的集合构成的。

深度神经网络与大量机器学习方式是兼容的。

例如,你输入猫的图片,输出的是一张人为标注为猫的图像,这叫作监督式学习。你可以给系统列举大量的监督式样例,并且将学习结合一个函数,这个函数与在监督式例子所描述的是相似的。

你也可以进行非监督式训练,你只得到图像而不知道图像里面的什么。然后系统可以依靠在众多图片中出现的模式学会挑选。所以,即使不知道图像叫作什么,它也可以在所有这些有猫的图形辨别出共同的事物来。

这也和更多像强化学习这样的外来技术是兼容的。强化学习是非常重要的技术,它正在被AlphaGo使用。

什么是深度学习?

神经网络模型可以说是基于我们所认识的大脑运作的方式,它并不是对神经元真正工作的详细模拟,而是一个简单抽象的神经元版本。

170008hwjxwajxw66wawwm.jpg

一个神经元能够接收许多输入信息,真实的神经元会将不同的优势(strengths)与不同的输入相联系。人工智能网络试着学习为所有那些边缘,亦即与这些不同输入关联的优势进行加权。

真实的神经元吸收一些输入与优势的组合,并决定是否发出一个脉冲。人工神经元不仅仅会发出脉冲,还会发出一个实数值。这些神经元计算的函数是输入的加权求和乘以非线性函数的权重。

现今通常所用的非线性函数是ReLU(max(0,x))。在上世纪九十年代,大部分非线性函数都是更加平滑 (https://www.quora.com/What-is-special-about-rectifier-neural-units-used-in-NN-learning)的 sigmoid或tanh函数。当神经元不放电的时候会取真正的零值,而不是非常接近零的数值的优秀特性,从而帮助优化系统。

例如,如果神经元有着三个输入X1,X2,X3,分别有着0.21,0.3,0.7的权重,那么计算函数将为:y = max(0, -.0.21*x1 + 0.3*x2 + 0.7*x3)。

在识别图片里是一只猫还是一只狗的过程中,图像会经过多层级处理,基于它们的输入神经元可以决定是否发射脉冲。

170008mv90e91mit1zwtm1.jpg

最底层的神经元只处理一小部分像素,更高层的神经元则会处理下层神经元的输出并决定是否发射脉冲。

模型会如此向上直至最后一层处理完毕,举个例子,这是一只猫。在这种情况下它错了,这是一只狗(尽管我也认为那是一只猫,那是一只在篮子里的狗吗?)。

输出错误的信号会反馈回系统中,接着其余模型会做出调整以让它在下一次处理图片时更有可能给出正确的答案。

调整整个模型所有的边缘权重以增大获得正确结果的可能性,这就是神经网络的目标。人们在所有的样本都如此处理,这样在大部分的样本中都会得到正确的输出。

学习算法非常简单。循环计算步骤如下:

随机选择一个训练样本「(输入,标签)」。例如,一张猫的图片,以及预期输出「猫」。

用「输入」运行神经网络,并观察它的结果。

调整边缘权重,让输出更接近与标签」。

该如何调整边缘权重以让输出接近标签呢?

反向传播法:这里是一篇针对此的推荐文章:Calculus on Computational Graphs: Backpropagation (http://colah.github.io/posts/2015-08-Backprop/)。

当神经网顶层选择的是猫而不是狗的时候,通过微积分链式法则来调整权重参数使得网络可以做更准确的预测。

170008znz6akknu8k6v7as.jpg

你需要和权重的箭头保持同一方向,让它更有可能认为这是一只狗。不要跳一大步,因为这可是一个复杂坎坷的表面。小步前进会让结果在下一次更有可能变成狗。通过大量迭代以及对样本的观察,结果就越有可能变成狗。

通过链式法则你可以理解底层的参数变化会如何影响输出。这意味着神经网络网络的变化如同涟漪般波及至输入,调整整个模型,并增大它说出狗的可能性。

真的神经网络由数以亿计参数组成,因此你正在一个亿维空间内做调整,并试着理解那是怎样影响网络输出结果的。

神经网络的很多优秀特性

神经网络可以运用到多个不同领域,用来解决不同的问题:

文本:英语和其他语言包含数万亿的单词。现有很多对应的文字资料,包含句与句对应的一种源语言文字与其翻译版的另一种语言文字。

视觉数据:数十亿的图像和视频。

声音:每天会产生几万小时的音频数据;

用户行为:不同的应用程序都在产生数据,无论你在搜索引擎敲下的字符还是在邮箱里标记的垃圾邮件,这些用户行为里可以不断被学习,并用来给你「定制」智能系统。

知识图谱:数十亿打标签的RDF triple数据。

你给的数据越多,其反馈的结果越好,你也会让这个模型更大。

如果你投入更多的数据却不去扩大你的模型,会进入一个模型能力的饱和状态,此时,模型学习到的只是关于你的数据集最显而易见的事实。

通过增加模型的规模,模型不仅可以记住一些明显的特征,还会记住一些只是偶然在数据集中出现的细微特征。

打造更大的模型需要更多数据和更强大的计算能力。谷歌一直在做的就是如何规模化计算量并投入到这些问题的解决中,从而训练更大的模型。

深度学习给谷歌带来哪些影响?

语音识别

语音识别团队第一个和谷歌大脑团队合作部署神经网络。在谷歌大脑团队帮助下,部署上线了一个新的、基于神经网络的语音模型,不再使用之前的隐马尔科夫模型。

声学模型的问题是从150毫秒的语音里预测其中10毫秒的声音是什么。类似与「ba」还是「ka」。接着你有了这些预测的完整序列,然后将它们和语言模型对接起来,以理解用户在说什么。

这个模型将识别错误率降低了30%,意义非常重大。此后语音团队继续在构建更加复杂的模型,并结合更好的神经网络降低错误率。现在你在手机上说话,语音识别已经比三到五年前好太多了。

Image 挑战赛

大约六年前, ImageNet的数据库公开,大约有100万图像数据,这个巨大的图像数据库对于推进计算机视觉的发展意义重大。

图像被分为1000个不同种类,每个种类大约1000张照片;

大约有1000张不同的豹子照片、1000张不同的汽车、滑板车照片等等;

其中有个复杂的因素:并非所有的标签都是正确的;

比赛的目标是概括出照片的新的类型。对于一张新照片,你能判断出来上面是猎豹还是樱桃吗?

在神经网络运用到比赛之前,这项比赛的错误率为26℅。2014年,谷歌赢得比赛时的错误率为6.66%。2015年的时候,获胜团队的错误率降低到3.46%。

这是一个巨大而且有深度的模型。每个盒子都布满了完整层级的神经元,它们正在进行卷积运算,关于这方面的详细情况,可以查看这篇论文《Going Deeper with Convolutions》

170008vm9rb9h9j5jqabzi.jpg

一个名叫 Andrej Karpathy 的人也参与了比赛,他的错误率是5.1%,他后来还写了篇文章《What I learned from competing against a ConvNet on ImageNet.》

神经网络模型擅长什么?

神经网络模型非常擅长识别精细程度的差别。比如,计算机擅长辨别人类不善于分辨的犬种。人类可能看到一朵花就只知道那是一朵花,计算机可以分辨那是一朵「芙蓉」或是一朵「大丽花」。

神经网络模型擅长归纳。比如不同种类的饭菜,尽管看起来不一样,但都会被标记为「饭菜」。

当计算机出错时,错误的原因是合理的。比如一只蛞蝓看起来很像一条蛇。

谷歌照片搜索

检查照片的像素并理解图像中的内容,这是个很强大的能力。

Google Photos 团队在没有标记它们的情况下部署了这一能力。你可以在没有标记图片的情况下搜索到雕像、尤达、图画、水等图片。

街景影像

在街景影像中,你希望可以阅读到所有的文本。这是更为精细更为具体的视觉任务。

首先需要能够找到图像中的文本。模型基本上都是被训练用来预测像素热图的:哪些像素包含文本,哪些不包含。训练数据是绘制于文本像素周围的多边形。

因为训练数据包含不同的字符集,它可以找到多种不同语言的文本。它可以识别大字体和小字体,离镜头近的和离得很远的文字,以及不同颜色的文本。

这是一个训练相对简单的模型。这是一个试图预测每个像素是否包含文本的传统的网络。

谷歌搜索排名的RankBrain

RankBrain于2015年推出,是谷歌第三重要的搜索排名因素。了解更多:谷歌将其利润丰厚的网络搜索交给人工智能机器。

搜索排名是不同的,因为你想要能够理解该模型,你想理解为什么它会做出特定的决策。

这是搜索排名团队犹豫在搜索排名中使用神经网络的一个原因。当系统出错时,他们希望了解什么会这样。

调试工具已被制造出来,而且模型也能被充分地理解,以克服这种异议。

一般来说你不想手动调整参数。你尝试理解为什么模型会做出那样的预测并搞清楚是否与训练数据相关,是与问题不匹配吗?你可能在一个分布式数据上进行训练,然后将其应用于另一个。通过搜索查询的分布,模型每天都能获得一点改变。因为事件在改变,模型也一直在改变。你必须了解你的分布是否是稳定的,比如在语音识别中,人们的声音并不会发生太大改变。查询和文档内容经常在改变,所以你必须确保你的模型是新鲜的。更一般地,我们需要打造更好的用于理解这些神经网络内部状况的工具,搞清楚是什么得出了预测。

序列至序列(Sequence-to-Sequence)映射模型

世界上许多问题都可归入到一个序列映射到另一个序列的框架中。谷歌的Sutskever、Vinyals 和 Le 在这个主题上写了一篇开关性的论文:使用神经网络的序列到序列学习 (http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf)。

特别地,他们研究了语言翻译,将英语翻译成法语中的问题。翻译事实上只是将英语句子序列映射到法语句子序列。

神经网络非常擅长学习非常复杂的功能,所以这个模型学习了映射英语句子到法语句子的功能。

170009nfzopeod6jkhp6pr.jpg

一种语言的一个句子通过EOS(end of sentence)信号一次输入一个词。当模型看到EOS 开始产出其它语言对应的句子时,模型就得到了训练。训练数据是具有同样含义的不同语言中的配对句子。它只是试图该函数建模。

模型会在每一步发出你的词汇中所有词条输入的概率分布。在推理而不是训练时间,你需要做一点搜索。如果你必须最大化每个词的概率,你并不一定会得到最可能的句子。直到找到最大可能的句子,联合概率的搜索才完成。

该系统是现在公共翻译服务中最先进的。其它翻译系统是一堆手写的代码或这个翻译问题的子块的机器学习模型,而非完全的端到端学习系统。

人们对这一模型的兴趣在暴增,因为很多问题都可被映射到序列到序列的方法。

智能回复(Smart Reply)

Smart Reply是序列到序列在产品中的一个应用案例。在手机上,你希望快速回复邮件,而打字又让人痛苦。

和 Gmail 团队合作,他们开发了一个能预测一条信息可能的回复的系统。

第一步是训练一个小模型以预测一条信息是否是可以快速回复的信息。如果是,就会激活一个更大的计算上更昂贵的模型;该模型将该信息作为一个序列,并尝试预测回复的单词序列。

比如,对于一封询问感恩节邀请的电子邮件,可预测到的回复有三个:把我们算上;我们会去;抱歉我们去不了。

Inbox 应用中惊人数量的回复都是通过 Smart Reply 生成的。

图片说明

生成一张图片说明时,你会试着让机器尽可能写出类似人类基于图片会做出的说明。

采用已经开发出来的图片模型,以及已经研发出来的Sequence-to-Sequence模型,把它们插在一起。图片模型被用作输入。

它被训练用来生成说明。训练数据集拥有五种不同的人给出的五种不同说明的图片。10万到20万的图片需要写70万句的说明。

一张婴儿怀抱泰迪熊的图片,电脑这么写的:一个抱着填充玩具动物孩子的特写;一个婴儿在泰迪熊旁边睡着了。

还没有达到人类理解水平,但机器出错时,结果可能会有趣。

综合视觉+翻译

技术能够综合起来。翻译团队编写了使用了在取景器中识别文本的计算机视觉APP。翻译文本,然后给图片叠加翻译文本(让人印象非常深刻,约37;29)。

模型足够小,整个计算都在设备上运行。

迭代(turnaround)时间和对研究的影响

在一天内完成单个CPU花费6周才能完成的训练

谷歌真的关心能够快速迭代研究。它的想法是快速的训练模型。理解什么运行良好,什么运行欠佳,找出下一组要运行的实验。

一个模型应该在在几分钟几小时内就能可训练,而不是几天甚至几个礼拜。让每个做这类研究的人更加富有生产力。

如何快速训练模型?

模型的并行性

一个神经网络有许多内在的并行性。

所有不同的个体神经元几乎都是彼此独立的,当你计算它们时,特别是,加入你有Local Receptive Fields,这是一个神经元从其下方少量神经元那里接受输入的地方。

能够跨越不同GPU卡上的不同机器对工作进行划分,只有跨越边界的数据才需要交流。

170010ll6vm9qjd2q96doh.jpg

数据的并行性

当你对模型的参数集进行优化时,不应该在中央服务的一台机器上进行,这样你就有不同的模型副本,通过它们之间的合作来进行参数优化。

在训练中理解不同的随机数据片段。每一个副本都会获得模型中当前的参数集,通过对相当规模数据的理解来判断出梯度,找出需要对参数所作的调整,并且将调整值发回至中央参数集服务器。参数服务器会对参数进行调整。不断重复这个过程。

这会在多个副本之间完成。有时他们会使用500台机器来生成500个模型副本,以便迅速实现参数的优化和处理数据。

这个过程可以异步进行,每个数据分任务在各自独自的循环运算中,获取参数,计算梯度并将它们传回,不会受到其他彼此的控制和同步。结果是,按照50-100的副本规模进行练习,对许多模型来说是可行的。

Q&A

如果不是诸如谷歌这样的大公司,无法获取海量数据集,你会怎么做?从一个运行良好的模型开始,用公共数据集进行训练。公共数据集普遍可以获取。然后用更加适合你问题的数据进行训练。当你从一个类似并且公开可获取的数据组开始时,针对你的特殊问题,可能只需要1,000或者10,000标签实例。ImageNet就是这种处理可行的好例子。

身为一个工程师,你所犯过的最大错误是什么?没有在BigTable里放入分布式事务处理能力。如果你想要更新多条数据,你不得不运作你自己的事务处理流程。没有放入事务处理能力是因为会增加系统设计的复杂度。回想起来,很对团队想要有那种能力,他们各自独立(在上层)去添加这个能力,也获得了不同程度成功。我们应该在核心系统实现事务处理能力。它在内部应用场景也会很有用。Spanner系统增加了事务处理搞定了这个问题。

英文链接:Jeff Dean on Large-Scale Deep Learning at Google

python机器学习深度学习总结

1、Python环境搭建(Windows)

开发工具:PyCharm Community Edition(free)

Python环境:WinPython 3.5.2.3Qt5
–此环境集成了机器学习和深度学习用到的主要包:
numpy,scipy,matplotlib,pandas,scikit-learn,theano,keras

IPython notebook :

2、示例代码:

scikit-learn sample

keras sample

3、数据集Datasets

GeoHey公共数据

4、kaggle平台

Kaggle是一个数据建模数据分析竞赛平台。企业和研究者可在其上发布数据,统计学者和数据挖掘专家可在其上进行竞赛以产生最好的模型。这一众包模式依赖于这一事实,即有众多策略可以用于解决几乎所有预测建模的问题,而研究者不可能在一开始就了解什么方法对于特定问题是最为有效的。Kaggle的目标则是试图通过众包的形式来解决这一难题,进而使数据科学成为一场运动。(wiki)

5、常见问题处理

Approaching (Almost) Any Machine Learning Problem

 

10 种机器学习算法的要点(附 Python 和 R 代码)

前言

谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和机器人受到了许多媒体关注,但是这家公司真正的未来在于机器学习,一种让计算机更聪明、更个性化的技术。

也许我们生活在人类历史上最关键的时期:从使用大型计算机,到个人电脑,再到现在的云计算。关键的不是过去发生了什么,而是将来会有什么发生。

工具和技术的民主化,让像我这样的人对这个时期兴奋不已。计算的蓬勃发展也是一样。如今,作为一名数据科学家,用复杂的算法建立数据处理机器一小时能赚到好几美金。但能做到这个程度可并不简单!我也曾有过无数黑暗的日日夜夜。

谁能从这篇指南里受益最多?

我今天所给出的,也许是我这辈子写下的最有价值的指南。

这篇指南的目的,是为那些有追求的数据科学家和机器学习狂热者们,简化学习旅途。这篇指南会让你动手解决机器学习的问题,并从实践中获得真知。我提供的是几个机器学习算法的高水平理解,以及运行这些算法的 R 和 Python 代码。这些应该足以让你亲自试一试了。

我特地跳过了这些技术背后的数据,因为一开始你并不需要理解这些。如果你想从数据层面上理解这些算法,你应该去别处找找。但如果你想要在开始一个机器学习项目之前做些准备,你会喜欢这篇文章的。

广义来说,有三种机器学习算法

1、 监督式学习

工作机制:这个算法由一个目标变量或结果变量(或因变量)组成。这些变量由已知的一系列预示变量(自变量)预测而来。利用这一系列变量,我们生成一个将输入值映射到期望输出值的函数。这个训练过程会一直持续,直到模型在训练数据上获得期望的精确度。监督式学习的例子有:回归、决策树、随机森林、K – 近邻算法、逻辑回归等。

2、非监督式学习

工作机制:在这个算法中,没有任何目标变量或结果变量要预测或估计。这个算法用在不同的组内聚类分析。这种分析方式被广泛地用来细分客户,根据干预的方式分为不同的用户组。非监督式学习的例子有:关联算法和 K – 均值算法。

3、强化学习

工作机制:这个算法训练机器进行决策。它是这样工作的:机器被放在一个能让它通过反复试错来训练自己的环境中。机器从过去的经验中进行学习,并且尝试利用了解最透彻的知识作出精确的商业判断。 强化学习的例子有马尔可夫决策过程。

常见机器学习算法名单

这里是一个常用的机器学习算法名单。这些算法几乎可以用在所有的数据问题上:

  1. 线性回归
  2. 逻辑回归
  3. 决策树
  4. SVM
  5. 朴素贝叶斯
  6. K最近邻算法
  7. K均值算法
  8. 随机森林算法
  9. 降维算法
  10. Gradient Boost 和 Adaboost 算法

1、线性回归

线性回归通常用于根据连续变量估计实际数值(房价、呼叫次数、总销售额等)。我们通过拟合最佳直线来建立自变量和因变量的关系。这条最佳直线叫做回归线,并且用 Y= a *X + b 这条线性等式来表示。

理解线性回归的最好办法是回顾一下童年。假设在不问对方体重的情况下,让一个五年级的孩子按体重从轻到重的顺序对班上的同学排序,你觉得这个孩子会怎么做?他(她)很可能会目测人们的身高和体型,综合这些可见的参数来排列他们。这是现实生活中使用线性回归的例子。实际上,这个孩子发现了身高和体型与体重有一定的关系,这个关系看起来很像上面的等式。

在这个等式中:

  • Y:因变量
  • a:斜率
  • x:自变量
  • b :截距

系数 a 和 b 可以通过最小二乘法获得。

参见下例。我们找出最佳拟合直线 y=0.2811x+13.9。已知人的身高,我们可以通过这条等式求出体重。

线性回归的两种主要类型是一元线性回归和多元线性回归。一元线性回归的特点是只有一个自变量。多元线性回归的特点正如其名,存在多个自变量。找最佳拟合直线的时候,你可以拟合到多项或者曲线回归。这些就被叫做多项或曲线回归。

Python 代码

R代码

2、逻辑回归

别被它的名字迷惑了!这是一个分类算法而不是一个回归算法。该算法可根据已知的一系列因变量估计离散数值(比方说二进制数值 0 或 1 ,是或否,真或假)。简单来说,它通过将数据拟合进一个逻辑函数来预估一个事件出现的概率。因此,它也被叫做逻辑回归。因为它预估的是概率,所以它的输出值大小在 0 和 1 之间(正如所预计的一样)。

让我们再次通过一个简单的例子来理解这个算法。

假设你的朋友让你解开一个谜题。这只会有两个结果:你解开了或是你没有解开。想象你要解答很多道题来找出你所擅长的主题。这个研究的结果就会像是这样:假设题目是一道十年级的三角函数题,你有 70%的可能会解开这道题。然而,若题目是个五年级的历史题,你只有30%的可能性回答正确。这就是逻辑回归能提供给你的信息。

从数学上看,在结果中,几率的对数使用的是预测变量的线性组合模型。

在上面的式子里,p 是我们感兴趣的特征出现的概率。它选用使观察样本值的可能性最大化的值作为参数,而不是通过计算误差平方和的最小值(就如一般的回归分析用到的一样)。

现在你也许要问了,为什么我们要求出对数呢?简而言之,这种方法是复制一个阶梯函数的最佳方法之一。我本可以更详细地讲述,但那就违背本篇指南的主旨了。

Python代码

R代码

更进一步:

你可以尝试更多的方法来改进这个模型:

  • 加入交互项
  • 精简模型特性
  • 使用正则化方法
  • 使用非线性模型

3、决策树

这是我最喜爱也是最频繁使用的算法之一。这个监督式学习算法通常被用于分类问题。令人惊奇的是,它同时适用于分类变量和连续因变量。在这个算法中,我们将总体分成两个或更多的同类群。这是根据最重要的属性或者自变量来分成尽可能不同的组别。想要知道更多,可以阅读:简化决策树

来源: statsexchange

在上图中你可以看到,根据多种属性,人群被分成了不同的四个小组,来判断 “他们会不会去玩”。为了把总体分成不同组别,需要用到许多技术,比如说 Gini、Information Gain、Chi-square、entropy。

理解决策树工作机制的最好方式是玩Jezzball,一个微软的经典游戏(见下图)。这个游戏的最终目的,是在一个可以移动墙壁的房间里,通过造墙来分割出没有小球的、尽量大的空间。

因此,每一次你用墙壁来分隔房间时,都是在尝试着在同一间房里创建两个不同的总体。相似地,决策树也在把总体尽量分割到不同的组里去。

更多信息请见:决策树算法的简化

Python代码

R代码

4、支持向量机

这是一种分类方法。在这个算法中,我们将每个数据在N维空间中用点标出(N是你所有的特征总数),每个特征的值是一个坐标的值。

举个例子,如果我们只有身高和头发长度两个特征,我们会在二维空间中标出这两个变量,每个点有两个坐标(这些坐标叫做支持向量)。

现在,我们会找到将两组不同数据分开的一条直线。两个分组中距离最近的两个点到这条线的距离同时最优化。

上面示例中的黑线将数据分类优化成两个小组,两组中距离最近的点(图中A、B点)到达黑线的距离满足最优条件。这条直线就是我们的分割线。接下来,测试数据落到直线的哪一边,我们就将它分到哪一类去。

更多请见:支持向量机的简化

将这个算法想作是在一个 N 维空间玩 JezzBall。需要对游戏做一些小变动:

  • 比起之前只能在水平方向或者竖直方向画直线,现在你可以在任意角度画线或平面。
  • 游戏的目的变成把不同颜色的球分割在不同的空间里。
  • 球的位置不会改变。

Python代码

R代码

5、朴素贝叶斯

在预示变量间相互独立的前提下,根据贝叶斯定理可以得到朴素贝叶斯这个分类方法。用更简单的话来说,一个朴素贝叶斯分类器假设一个分类的特性与该分类的其它特性不相关。举个例子,如果一个水果又圆又红并且直径大约是 3 英寸,那么这个水果可能会是苹果。即便这些特性互相依赖或者依赖于别的特性的存在,朴素贝叶斯分类器还是会假设这些特性分别独立地暗示这个水果是个苹果。

朴素贝叶斯模型易于建造,且对于大型数据集非常有用。虽然简单,但是朴素贝叶斯的表现却超越了非常复杂的分类方法。

贝叶斯定理提供了一种从P(c)、P(x)和P(x|c) 计算后验概率 P(c|x) 的方法。请看以下等式:

在这里,

  • P(c|x) 是已知预示变量(属性)的前提下,类(目标)的后验概率
  • P(c) 是类的先验概率
  • P(x|c) 是可能性,即已知类的前提下,预示变量的概率
  • P(x) 是预示变量的先验概率

例子:让我们用一个例子来理解这个概念。在下面,我有一个天气的训练集和对应的目标变量“Play”。现在,我们需要根据天气情况,将会“玩”和“不玩”的参与者进行分类。让我们执行以下步骤。

步骤1:把数据集转换成频率表。

步骤2:利用类似“当Overcast可能性为0.29时,玩耍的可能性为0.64”这样的概率,创造 Likelihood 表格。

步骤3:现在,使用朴素贝叶斯等式来计算每一类的后验概率。后验概率最大的类就是预测的结果。

问题:如果天气晴朗,参与者就能玩耍。这个陈述正确吗?

我们可以使用讨论过的方法解决这个问题。于是 P(会玩 | 晴朗)= P(晴朗 | 会玩)* P(会玩)/ P (晴朗)

我们有 P (晴朗 |会玩)= 3/9 = 0.33,P(晴朗) = 5/14 = 0.36, P(会玩)= 9/14 = 0.64

现在,P(会玩 | 晴朗)= 0.33 * 0.64 / 0.36 = 0.60,有更大的概率。

朴素贝叶斯使用了一个相似的方法,通过不同属性来预测不同类别的概率。这个算法通常被用于文本分类,以及涉及到多个类的问题。

Python代码

R代码

6、KNN(K – 最近邻算法)

该算法可用于分类问题和回归问题。然而,在业界内,K – 最近邻算法更常用于分类问题。K – 最近邻算法是一个简单的算法。它储存所有的案例,通过周围k个案例中的大多数情况划分新的案例。根据一个距离函数,新案例会被分配到它的 K 个近邻中最普遍的类别中去。

这些距离函数可以是欧式距离、曼哈顿距离、明式距离或者是汉明距离。前三个距离函数用于连续函数,第四个函数(汉明函数)则被用于分类变量。如果 K=1,新案例就直接被分到离其最近的案例所属的类别中。有时候,使用 KNN 建模时,选择 K 的取值是一个挑战。

更多信息:K – 最近邻算法入门(简化版)

我们可以很容易地在现实生活中应用到 KNN。如果想要了解一个完全陌生的人,你也许想要去找他的好朋友们或者他的圈子来获得他的信息。

在选择使用 KNN 之前,你需要考虑的事情:

  • KNN 的计算成本很高。
  • 变量应该先标准化(normalized),不然会被更高范围的变量偏倚。
  • 在使用KNN之前,要在野值去除和噪音去除等前期处理多花功夫。

Python代码

R代码

7、K 均值算法

K – 均值算法是一种非监督式学习算法,它能解决聚类问题。使用 K – 均值算法来将一个数据归入一定数量的集群(假设有 k 个集群)的过程是简单的。一个集群内的数据点是均匀齐次的,并且异于别的集群。

还记得从墨水渍里找出形状的活动吗?K – 均值算法在某方面类似于这个活动。观察形状,并延伸想象来找出到底有多少种集群或者总体。

K – 均值算法怎样形成集群:

  1. K – 均值算法给每个集群选择k个点。这些点称作为质心。
  2. 每一个数据点与距离最近的质心形成一个集群,也就是 k 个集群。
  3. 根据现有的类别成员,找出每个类别的质心。现在我们有了新质心。
  4. 当我们有新质心后,重复步骤 2 和步骤 3。找到距离每个数据点最近的质心,并与新的k集群联系起来。重复这个过程,直到数据都收敛了,也就是当质心不再改变。

如何决定 K 值:

K – 均值算法涉及到集群,每个集群有自己的质心。一个集群内的质心和各数据点之间距离的平方和形成了这个集群的平方值之和。同时,当所有集群的平方值之和加起来的时候,就组成了集群方案的平方值之和。

我们知道,当集群的数量增加时,K值会持续下降。但是,如果你将结果用图表来表示,你会看到距离的平方总和快速减少。到某个值 k 之后,减少的速度就大大下降了。在此,我们可以找到集群数量的最优值。

Python代码

R代码

8、随机森林

随机森林是表示决策树总体的一个专有名词。在随机森林算法中,我们有一系列的决策树(因此又名“森林”)。为了根据一个新对象的属性将其分类,每一个决策树有一个分类,称之为这个决策树“投票”给该分类。这个森林选择获得森林里(在所有树中)获得票数最多的分类。

每棵树是像这样种植养成的:

  1. 如果训练集的案例数是 N,则从 N 个案例中用重置抽样法随机抽取样本。这个样本将作为“养育”树的训练集。
  2. 假如有 M 个输入变量,则定义一个数字 m<<M。m 表示,从 M 中随机选中 m 个变量,这 m 个变量中最好的切分会被用来切分该节点。在种植森林的过程中,m 的值保持不变。
  3. 尽可能大地种植每一棵树,全程不剪枝。

若想了解这个算法的更多细节,比较决策树以及优化模型参数,我建议你阅读以下文章:

  1. 随机森林入门—简化版
  2. 将 CART 模型与随机森林比较(上)
  3. 将随机森林与 CART 模型比较(下)
  4. 调整你的随机森林模型参数

Python

R代码

9、降维算法

在过去的 4 到 5 年里,在每一个可能的阶段,信息捕捉都呈指数增长。公司、政府机构、研究组织在应对着新资源以外,还捕捉详尽的信息。

举个例子:电子商务公司更详细地捕捉关于顾客的资料:个人信息、网络浏览记录、他们的喜恶、购买记录、反馈以及别的许多信息,比你身边的杂货店售货员更加关注你。

作为一个数据科学家,我们提供的数据包含许多特点。这听起来给建立一个经得起考研的模型提供了很好材料,但有一个挑战:如何从 1000 或者 2000 里分辨出最重要的变量呢?在这种情况下,降维算法和别的一些算法(比如决策树、随机森林、PCA、因子分析)帮助我们根据相关矩阵,缺失的值的比例和别的要素来找出这些重要变量。

想要知道更多关于该算法的信息,可以阅读《降维算法的初学者指南》

Python代码

R Code

10、Gradient Boosting 和 AdaBoost 算法

当我们要处理很多数据来做一个有高预测能力的预测时,我们会用到 GBM 和 AdaBoost 这两种 boosting 算法。boosting 算法是一种集成学习算法。它结合了建立在多个基础估计值基础上的预测结果,来增进单个估计值的可靠程度。这些 boosting 算法通常在数据科学比赛如 Kaggl、AV Hackathon、CrowdAnalytix 中很有效。

更多:详尽了解 Gradient 和 AdaBoost

Python代码

R代码

GradientBoostingClassifier 和随机森林是两种不同的 boosting 树分类器。人们常常问起这两个算法之间的区别。

结语

现在我能确定,你对常用的机器学习算法应该有了大致的了解。写这篇文章并提供 Python 和 R 语言代码的唯一目的,就是让你立马开始学习。如果你想要掌握机器学习,那就立刻开始吧。做做练习,理性地认识整个过程,应用这些代码,并感受乐趣吧!

from:http://blog.jobbole.com/92021/

Machine Learning &Deep Learning Resource

基础:

什么是机器学习?
机器学习该怎么入门?
机器学习的八个步骤
神经网络:卷积神经网络
数据挖掘学习图谱
图解机器学习
深度学习概述:从感知机到深度网络
A gentle guide to machine learning
Conv Nets: A Modular Perspective
周剑铭 柳渝:机器与“学习”——寻找人工智能的幽灵
一天搞懂深度學習
机器学习自学指南
一文读懂 CNN、DNN、RNN 内部网络结构区别
何为机器学习特征选择的经典三刀?
A Guide to Deep Learning by  YN2

数学及算法基础:
机器学习(一) 简单的背景介绍、线性回归、梯度下降
机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
线性判别分析(LDA), 主成分分析(PCA)
麻省理工公开课:线性代数
李航老师的《统计学习方法》

框架:

 最好的Python机器学习库
SciKit-Learn
Caffe
Torchnet(Facebook)
TensorFlow(Google)
deeplearning4j

应用:

Neural Network for Recognition of Handwritten Digits
MNIST  OCR
ImageNet
TensorFlow在图像识别中的应用
探索推荐引擎内部的秘密,第 1 部分: 推荐引擎初探
机器学习问题的十个实例

平台 :

大数据竞赛平台——Kaggle 入门

课程:

Machine Learning
Neural Networks for Machine Learning

资源汇总:
机器学习入门资源不完全汇总
DeepLearning.net
josephmisiti/awesome-machine-learning · GitHub 机器学习资源大全
《机器学习实践》源码和《机器学习-算法原理与编程实践》源码以及学习心得
Learn Machine Learning With These Six Great 
博客文章索引
参考文献和Deep Learning学习资源
李航《浅谈我对机器学习的理解》 机器学习与自然语言处理
机器学习(Machine Learning)&深度学习(Deep Learning)资料
DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解
DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解
python sample code of DL
Scipy Lecture Notes
scikit-learn: machine learning in Python
Keras中文文档
机器学习资源大全中文版
机器学习的最佳入门学习资源
机器学习(Machine Learning)&深度学习(Deep Learning)资料

职位技能及需求:

大数据职位所需的数据场技能